4.7 Article

Training Radial Basis Function Neural Networks for Classification via Class-Specific Clustering

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNNLS.2015.2497286

关键词

Clustering methods; particle swarm optimization (PSO); radial basis function networks (RBFNNs); supervised learning

向作者/读者索取更多资源

In training radial basis function neural networks (RBFNNs), the locations of Gaussian neurons are commonly determined by clustering. Training inputs can be clustered on a fully unsupervised manner (input clustering), or some supervision can be introduced, for example, by concatenating the input vectors with weighted output vectors (input-output clustering). In this paper, we propose to apply clustering separately for each class (class-specific clustering). The idea has been used in some previous works, but without evaluating the benefits of the approach. We compare the class-specific, input, and input-output clustering approaches in terms of classification performance and computational efficiency when training RBFNNs. To accomplish this objective, we apply three different clustering algorithms and conduct experiments on 25 benchmark data sets. We show that the class-specific approach significantly reduces the overall complexity of the clustering, and our experimental results demonstrate that it can also lead to a significant gain in the classification performance, especially for the networks with a relatively few Gaussian neurons. Among other applied clustering algorithms, we combine, for the first time, a dynamic evolutionary optimization method, multidimensional particle swarm optimization, and the class-specific clustering to optimize the number of cluster centroids and their locations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据