4.5 Article

Coinhibition of the deubiquitinating enzymes, USP14 and UCHL5, with VLX1570 is lethal to ibrutinib- or bortezomib-resistant Waldenstrom macroglobulinemia tumor cells

期刊

BLOOD CANCER JOURNAL
卷 6, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/bcj.2016.93

关键词

-

资金

  1. Leukemia and Lymphoma Society (LLS) [3 J]
  2. Daniel Foundation of Alabama
  3. University of Iowa/Mayo Clinic Lymphoma SPORE Developmental Research program [P50 CA097274]
  4. Henry J Predolin Foundation
  5. Mayo-Karolinska Collaborative Award
  6. Mayo Clinic Cancer Center [CA015083]
  7. Leukemia and Lymphoma Society (Leukemia) [21]

向作者/读者索取更多资源

The survival of Waldenstrom macroglobulinemia (WM) tumor cells hinges on aberrant B-cell receptor (BCR) and MYD88 signaling. WM cells upregulate the proteasome function to sustain the BCR-driven growth while maintaining homeostasis. Clinically, two treatment strategies are used to disrupt these complementary yet mutually exclusive WM survival pathways via ibrutinib (targets BTK/MYD88 node) and bortezomib (targets 20 S proteasome). Despite the success of both agents, WM patients eventually become refractory to treatment, highlighting the adaptive plasticity of WM cells and underscoring the need for development of new therapeutics. Here we provide a comprehensive preclinical report on the anti-WM activity of VLX1570, a novel small-molecule inhibitor of the deubiquitinating enzymes (DUBs), ubiquitin-specific protease 14 (USP14) and ubiquitin carboxyl-terminal hydrolase isozyme L5 (UCHL5). Both DUBs reside in the 19 S proteasome cap and their inhibition by VLX1570 results in rapid and tumor-specific apoptosis in bortezomib-or ibrutinib-resistant WM cells. Notably, treatment of WM cells with VLX1570 downregulated BCRassociated elements BTK, MYD88, NFATC, NF-kappa B and CXCR4, the latter whose dysregulated function is linked to ibrutinib resistance. VLX1570 administered to WM-xenografted mice resulted in decreased tumor burden and prolonged survival (P=0.0008) compared with vehicle-treated mice. Overall, our report demonstrates significant value in targeting USP14/UCHL5 with VLX1570 in drug-resistant WM and carries a high potential for clinical translation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据