4.5 Article

Factors Affecting the Ambient Physicochemical Properties of Cerium-Containing Particles Generated by Nanoparticle Diesel Fuel Additive Use

期刊

AEROSOL SCIENCE AND TECHNOLOGY
卷 49, 期 6, 页码 371-380

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/02786826.2015.1027809

关键词

-

资金

  1. US EPA through its Office of Research and Development [EP-12-D-000128, EP-D-11-006]
  2. U.S. government [DW-13-92339401-0]
  3. Office of Research and Development, US EPA

向作者/读者索取更多资源

Despite the use of cerium oxide nanoparticles (nCe) in some regions as a diesel fuel additive, the physicochemical properties of the resulting exhaust particles in the ambient atmosphere are not well known. The mixing state of ceria with other exhaust particles is one such physicochemical property that has been shown to potentially affect ecosystem/human health. In this study, cerium-containing particles associated with an nCe additive were collected in the laboratory and in Newcastle-upon-Tyne, UK where the local bus fleet uses the Envirox nCe additive. Electron microscopy of laboratory-generated exhaust samples indicated both individual ceria and soot particles (external mixture) and ceria contained within soot agglomerations (internal mixture). Low ambient concentrations prevented quantification of the ceria particle mixing state in the atmosphere; therefore, a multicomponent sectional aerosol dynamic model was used to predict the size, chemical composition, and mixing state of ceria particles as a function of distance from an idealized roadway. Model simulations predicted that most ceria particles remain nonmixed in the ambient atmosphere (300m downwind from the roadway) due to slow coagulation, with the mixing rate most sensitive to the ceria content of emitted nuclei-mode particles and the particle concentration upwind of the road. Although microscopy analysis showed both external and internal mixtures of ceria and soot in freshly emitted particles, the ambient mass concentration, and size distribution of ceria particles predicted by the model was insensitive to the emitted mixing state. Copyright 2015 American Association for Aerosol Research

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据