4.7 Article

Free vibration analysis of simply supported beams with solid and thin-walled cross-sections using higher-order theories based on displacement variables

期刊

THIN-WALLED STRUCTURES
卷 98, 期 -, 页码 478-495

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2015.10.012

关键词

-

向作者/读者索取更多资源

Solutions for undamped free vibration of beams with solid and thin-walled cross-sections are provided by using refined theories based on displacement variables. In essence, higher-order displacement fields are developed by using the Carrera unified formulation (CUF), and by discretizing the cross-section kinematics with bilinear, cubic and fourth-order Lagrange polynomials. Subsequently, the differential equations of motion and the natural boundary conditions are formulated in terms of fundamental nuclei by using CUF and the strong form of the principle of virtual displacements. The second-order system of ordinary differential equations is then reduced into a classical eigenvalue problem by assuming simply supported boundary conditions. The proposed methodology is extensively assessed for different solid and thin-walled metallic beam structures and the results are compared with those appeared in published literature and also checked by finite element solutions. The research demonstrates that: (i) the innovative 1D closed form CUF represents a reliable and compact method to develop refined beam models with solely displacement variables; (ii) 3D-like numerically exact solutions of complex structures can be obtained with ease; and (iii) the numerical efficiency of the present method is uniquely robust when compared to other methods that provide similar accuracies. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据