4.6 Article

A mathematical model of MHD nanofluid flow having gyrotactic microorganisms with thermal radiation and chemical reaction effects

期刊

NEURAL COMPUTING & APPLICATIONS
卷 30, 期 4, 页码 1237-1249

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00521-016-2768-8

关键词

Magnetic field; Chemical reaction; Nanofluid; Numerical solution; Gyrotactic microorganisms

向作者/读者索取更多资源

In this article, we have examined three-dimensional unsteady MHD boundary layer flow of viscous nanofluid having gyrotactic microorganisms through a stretching porous cylinder. Simultaneous effects of nonlinear thermal radiation and chemical reaction are taken into account. Moreover, the effects of velocity slip and thermal slip are also considered. The governing flow problem is modelled by means of similarity transformation variables with their relevant boundary conditions. The obtained reduced highly nonlinear coupled ordinary differential equations are solved numerically by means of nonlinear shooting technique. The effects of all the governing parameters are discussed for velocity profile, temperature profile, nanoparticle concentration profile and motile microorganisms' density function presented with the help of tables and graphs. The numerical comparison is also presented with the existing published results as a special case of our study. It is found that velocity of the fluid diminishes for large values of magnetic parameter and porosity parameter. Radiation effects show an increment in the temperature profile, whereas thermal slip parameter shows converse effect. Furthermore, it is also observed that chemical reaction parameter significantly enhances the nanoparticle concentration profile. The present study is also applicable in bio-nano-polymer process and in different industrial process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据