4.5 Article

Effect of in situ and furnace thermal annealing on the mechanical properties and sustainability of 3D printed carbon-peek composites

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/09544054231209797

关键词

Additive layer man; optimization; rapid prototyping; manufacturing management; production machines

向作者/读者索取更多资源

This study investigates the impact of heat treatments on carbon fibre PEEK composite components and finds that heat treatments can effectively improve the mechanical properties of the material. Comparing with traditional furnace annealing, the Direct Annealing System used during the 3D printing process shows lower environmental and economic impacts.
The present work aims at investigating the impact of heat treatments on the mechanical, environmental and economic performances of components in carbon fibre polyetheretherketone (PEEK) composite produced using the Fused Deposition Modelling technique. The mechanical properties of PEEK can be strongly improved by performing heat treatments to maximize the degree of crystallinity in PEEK. To this purpose, the typical annealing heat treatment in a furnace, that is energy and time intensive, was compared to an innovative in situ annealing process named Direct Annealing System (DAS), which is performed during the 3D printing process. In order to evaluate the effect of heat treatment on mechanical properties of 3D printed parts, tensile tests were carried out on samples treated both using the annealing in a furnace and DAS processes. Similarly, the environmental and economic impacts of the different heat treatments were analysed by means of Life Cycle Assessment and Life Cycle Costing methodologies. The results demonstrated that the DAS system allows the improvement of the mechanical properties of carbon fibre PEEK composite, even though the highest performances can be obtained using a heat treatment in furnace. On the other hand, the DAS system is characterized by lower environmental and economic impacts than the annealing in furnace, denoting its more sustainability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据