4.7 Article

4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to promote cuproptosis in colorectal cancer

期刊

ENERGY REPORTS
卷 9, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.biopha.2023.114301

关键词

Cuproptosis; 4-Octyl itaconate; Aerobic glycolysis; Colorectal cancer

向作者/读者索取更多资源

Cuproptosis, a new cell death pathway induced by copper, is associated with mitochondrial respiration and mediated by protein lipoylation. This study explores the role of cuproptosis in colorectal cancer progression. The results show that elesclomol-Cu inhibits cell viability and promotes apoptosis in colorectal cancer cells. Additionally, 4-Octyl itaconate (4-OI) enhances cuproptosis and inhibits aerobic glycolysis through GAPDH, leading to better anti-tumor effects in vivo.
Cuproptosis, a novel copper-induced cell death pathway, is linked to mitochondrial respiration and mediated by protein lipoylation. The discovery of cuproptosis unfolds new areas of investigation, particularly in cancers. The present study aimed to explore the role of cuproptosis in colorectal cancer progression. The genetic alterations of cuproptosis in colon cancer were evaluated using a database. MTT assays, colony formation, and flow cytometry were used to examine the effect of elesclomol-Cu and 4-Octyl itaconate (4-OI) on colorectal cancer cell and oxaliplatin-resistant cell viability. The anti-tumor effect of elesclomol with 4-OI was verified in vivo assay. The results showed that FDX1, SDHB, DLAT, and DLST genes were more highly expressed in normal tissues than those in primary tumor tissues. Patients with high expressions of these genes in tumor tissues had a better prognosis. Using MTT assay and colony formation analysis, elesclomol-Cu pulse treatment showed significant inhibition of cell viability in HCT116, LoVo, and HCT116-R cells. In addition, flow cytometry revealed elesclomol-Cu significantly promoted apoptosis. Tetrathiomolybdate, a copper chelator, markedly inhibited cuproptosis. Subsequently, we found 2-deoxy-D-glucose, a glucose metabolism inhibitor, sensitized cuproptosis. Furthermore, galactose further promoted cuproptosis. Interestingly, 4-OI significantly enhanced cuproptosis which was irrelevant to ROS production, apoptosis, necroptosis, or pyroptosis pathways. Aerobic glycolysis was inhibited by 4OI through GAPDH, one of the key enzymes of glycolysis, sensitizing cuproptosis. Meanwhile, FDX1 knockdown weakened the ability of 4-OI to promote cuproptosis. In vivo experiments, 4-OI with elesclomol-Cu showed better anti-tumor effects. These results indicated that elesclomol-Cu rapidly halted cell growth in colorectal cancer cells and oxaliplatin-resistant cell line. Importantly, we revealed that 4-OI inhibited aerobic glycolysis by targeting GAPDH to promote cuproptosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据