4.7 Article

Frankia consortium extracts high-value metals from e-waste

期刊

出版社

ELSEVIER
DOI: 10.1016/j.eti.2022.102564

关键词

e-waste; e-fine particles; Frankia consortium; Precious metals; Organic acids

资金

  1. Bharathidasan University Research Fellow (URF) [02492/URF/K7/2016]

向作者/读者索取更多资源

The research focuses on the microbial extraction method using native Frankia consortium isolates to extract high-value metal elements from e-waste. Analytical techniques including AAS, SEM with EDX, XRD, and FT-IR were employed to examine the morphological arrangements and composition of metal resources in e-fine particles. The results demonstrate the presence of high-value metal components and the effectiveness of the two-step bioleaching approach in metal recovery. The study highlights the importance of the Frankia consortium's by-products in the bioleaching process.
The microbial extraction method can be improved by adopting Frankia consortium native isolates with unique features for extracting high-value metals from e-waste. The goal of this research would be how native Frankia consortium isolates retrieved high-value elements from e-waste. Analytic techniques such as AAS, SEM with EDX, and XRD were used to examine the morphological arrangements and composition of high-value metal element resources in e-fine particles of e-waste. The detection reveals that high-value metal components such as Ag, Au, Cu, and Zn are present. The Frankia consortium was utilized in two leaching processes to bioleach high-value metal element resources from e-fine particles. Since the two-step bioleaching approach yielded the most effective high-value metal recovery when compared to the one-step bioleaching process. While comparing the two-step method to the one-step method, the synthesis of secondary metabolites, phosphatase enzyme, and organic acids by Frankia consortium was shown to be higher in the two-step method. The bioleaching process is mostly influenced by the above-mentioned Frankia consortium by-products. The FT-IR spectrum confirmed the existence of organic acids functional groups during the e-fine particle and Frankia consortium interactions. Leaching of high-value metal elements and control e fine particles were found by AAS spectra analysis. As a result, the starting concentrations of high-value metal elements are Au (0.04 mg/g), Ag (0.04 mg/g), Cu (0.12 mg/g), and Zn (0.10 mg/g), respectively. As a consequence, the e-fine particles' two-step at 0.2 percent density demonstrated that they are capable of leaching metal concentrations such as Au (0.11 mg/g), Ag (0.09 mg/g), Cu (0.17 mg/g), and Zn (0.15 mg/g). Analytical techniques such as XRD, SEM with EDX, AAS, and FT-IR were used to validate high-value metal resources recovered.& nbsp;(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据