4.6 Article

Generative Adversarial Neural Networks for Denoising Coherent Multidimensional Spectra

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 126, 期 23, 页码 3816-3825

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpca.2c02605

关键词

-

资金

  1. Welch Foundation [F-1891]
  2. NSF-CAREER [CHE-1847199]
  3. UT Austin Provost Graduate Excellence Fellowship

向作者/读者索取更多资源

This article proposes a method for denoising ultrafast two-dimensional infrared (2D IR) spectra using conditional generative adversarial neural networks (cGANNs). The cGANN approach can eliminate shot-to-shot noise and reconstruct the line shapes in the noisy input spectrum while preserving key features. The performance of the cGANN is benchmarked using experimental 2D IR spectra, demonstrating its effectiveness in recovering line shapes and extracting frequency-frequency time correlation functions (FFCF). Practical guidelines for extending the denoising method to other coherent multidimensional spectroscopies are also provided.
Ultrafast spectroscopy often involves measuring weak signals and long data acquisition times. Spectra are typically collected as a pump-probe spectrum by measuring differences in intensity across laser shots. Shot-to-shot intensity fluctuations are most often the primary source of noise in ultrafast spectroscopy. Here, we present a novel approach for denoising ultrafast twodimensional infrared (2D IR) spectra using conditional generative adversarial neural networks (cGANNs). The cGANN approach is able to eliminate shot-toshot noise and reconstruct the line shapes present in the noisy input spectrum. We present a general approach for training the cGANN using matched pairs of noisy and clean synthetic 2D IR spectra based on the Kubo-line shape model for a threelevel system. Experimental shot-to-shot laser noise is added to synthetic spectra to recreate the noise profile present in measured experimental spectra. The cGANNs can recover line shapes from synthetic 2D IR spectra with signal-to-noise ratios as low as 2:1, while largely preserving the key features such as center frequencies, line widths, and diagonal elongation. In addition, we benchmark the performance of the cGANN using experimental 2D IR spectra of an ester carbonyl vibrational probe and demonstrate that, by applying the cGANN denoising approach, we can extract the frequency-frequency time correlation function (FFCF) from reconstructed spectra using a nodal-line slope analysis. Finally, we provide a set of practical guidelines for extending the denoising method to other coherent multidimensional spectroscopies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据