4.7 Article

Betaine Alleviates High-Fat Diet-Induced Disruption of Hepatic Lipid and Iron Homeostasis in Mice

期刊

出版社

MDPI
DOI: 10.3390/ijms23116263

关键词

betaine; high fat diet; lipogenesis; iron metabolism; DNA methylation

资金

  1. National Natural Science Foundation of China [31972638]
  2. Priority Academic Program Development of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

Betaine supplementation alleviates high-fat diet-induced disruption of hepatic lipid and iron metabolism, which is associated with modification of CpG methylation on promoter of lipogenic and iron-metabolic genes.
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive fat deposition in the liver, which is often associated with disrupted iron homeostasis. Betaine has been reported to be hepatoprotective, yet whether and how betaine ameliorates high-fat diet-induced disruption of hepatic lipid and iron homeostasis remains elusive. In this study, mice were fed either standard (CON) or high-fat diet (HFD) for 9 weeks to establish a NAFLD model. Mice raised on HF diet were then assigned randomly to HF and HFB groups, HFB group being supplemented with 1% (w/v) of betaine in the drinking water for 13 weeks. Betaine supplementation significantly alleviated excessive hepatic lipid deposition and restored hepatic iron content. Betaine partly yet significantly reversed HFD-induced dysregulation of lipogenic genes such as PRAR gamma and CD36, as well as the iron-metabolic genes including FPN and HAMP that encodes hepcidin. Similar mitigation effects of betaine were observed for BMP2 and BMP6, the up-stream regulators of hepcidin expression. Betaine significantly rectified disrupted expression of methyl transfer gene, including BHMT, GNMT and DNMT1. Moreover, HFD-modified CpG methylation on the promoter of PRAR gamma and HAMP genes was significantly reversed by betaine supplementation. These results indicate that betaine alleviates HFD-induced disruption of hepatic lipid and iron metabolism, which is associated with modification of CpG methylation on promoter of lipogenic and iron-metabolic genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据