4.7 Article

CO2 reforming of CH4 in single and double dielectric barrier discharge reactors: Comparison of discharge characteristics and product distribution

期刊

JOURNAL OF CO2 UTILIZATION
卷 53, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jcou.2021.101703

关键词

Non-thermal plasma; CO2 reforming of CH4; Dielectric barrier discharge; Dielectric structure; Discharge characteristics; Product distribution; Energy efficiency

资金

  1. National Natural Science Foundation of China [51807087]
  2. Natural Science Foundation of Jiangsu Province of China [BK20180705]
  3. Project of Six Talent Peak High-Level Talent Team of Jiangsu Province [TD-JNHB-006]
  4. Postgraduate Research & Practice Innovation Program of Jiangsu Province of China [KYCX20_1078]
  5. State Key Laboratory of Electrical Insulation and Power Equipment [EIPE19208]
  6. Australian Research Council (ARC)
  7. QUT Centre for Materials Science

向作者/读者索取更多资源

This study investigates the performance of plasma CO2 reforming of CH4 in single-dielectric (DBD-SD) and double-dielectric (DBD-DD) DBD reactors under different discharge powers. Results show that DBD-SD reactor exhibits higher conversion of CO2 and CH4 at high discharge power, while DBD-DD reactor has higher selectivities for gaseous products. Further optimization of the DBD reactor is required for industrial applications.
CO2 reforming of CH4 in a non-thermal plasma process (e.g., dielectric barrier discharge, DBD) possesses dual benefits for our environment and energy needs. However, this process is strongly influenced by the dielectric structure of the DBD. Here, plasma CO2 reforming of CH4 has been performed in both single-dielectric and double-dielectric DBD (DBD-SD and DBD-DD) reactors under atmospheric pressure. Electrical and optical characterization, along with temperature measurements are performed to understand the influence of the DBD-SD and DBD-DD designs. Reactor performance for reforming is compared under different discharge powers. The results show that CO2/CH4 discharges in both DBD-SD and DBD-DD display typical filamentary microdischarges. Compared with the DBD-DD, the DBD-SD reactor exhibits a larger number and higher intensity of current pulses, which leads to a higher electron density and formation of reactive species. The highest conversion of CO2 (24.1 %) and CH4 (49.2 %) are achieved in the DBD-SD at a high discharge power (75 W). Moreover, higher selectivities of gaseous products are obtained in the DBD-DD, while the DBD-SD reactor shows a higher selectivity for liquid products, mainly including methanol and acetic acid. The highest energy efficiencies for reactant conversion (0.34 mmol/kJ), gaseous and liquid production formation (0.26 mmol/kJ and 0.015 mmol/kJ) are achieved in the DBD-SD reactor at a low discharge power (22 W), resulting from the low energy loss to the environment. However, the carbon deposited on the inner electrode surface in the DBD-SD would have an adverse influence on the reactor's performance. Further research on the optimization of the DBD reactor to establish an efficient plasma-catalysis system is required for industrial applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Review Materials Science, Multidisciplinary

Plasma-controlled surface wettability: recent advances and future applications

Chuanlong Ma, Anton Nikiforov, Dirk Hegemann, Nathalie De Geyter, Rino Morent, Kostya (Ken) Ostrikov

Summary: This review presents recent advances in low-temperature plasma processing for controlling surface wettability. The underlying mechanisms, key features of fabrication processes, and water-surface interactions are discussed. It aims to guide further development of advanced functional materials.

INTERNATIONAL MATERIALS REVIEWS (2023)

Article Chemistry, Physical

Recent advances in plasma-enabled ammonia synthesis: state-of-the-art, challenges, and outlook

Xin Zeng, Shuai Zhang, Xiucui Hu, Cheng Zhang, Kostya (Ken) Ostrikov, Tao Shao

Summary: With the increase in the greenhouse effect and reduction of fossil fuel resources, finding a feasible solution to directly convert power to chemicals using renewable energy is urgent. The power-to-chemicals approach, such as non-thermal plasma, electro-catalysis, and photo-catalysis, has shown great potential in the past two decades. This paper introduces the application of plasma technology in energy conversion, focusing on plasma-enabled ammonia synthesis and analyzing its state-of-the-art, mechanisms, and techno-economics. It emphasizes the importance of the power-to-chemicals approach in reducing carbon emissions and environmental pollution.

FARADAY DISCUSSIONS (2023)

Article Chemistry, Multidisciplinary

Hybrid 2D perovskite and red emitting carbon dot composite for improved stability and efficiency of LEDs

Amandeep Singh Pannu, Suvankar Sen, Xiaodong (Tony) Wang, Robert Jones, Kostya (Ken) Ostrikov, Prashant Sonar

Summary: Organic-inorganic hybrid lead trihalide perovskites have shown promise in various optoelectronic devices. Red-emitting perovskite-based LEDs have been less developed compared to green and blue ones. This study utilizes red-emitting 2D perovskites and carbon dots to create a stable composite material for red-emitting LEDs with improved performance.

NANOSCALE (2023)

Article Chemistry, Multidisciplinary

Plasma-Enabled Graphene Quantum Dot Hydrogels as Smart Anticancer Drug Nanocarriers

Darwin Kurniawan, Jacob Mathew, Michael Ryan Rahardja, Hoang-Phuc Pham, Pei-Chun Wong, Neralla Vijayakameswara Rao, Kostya (Ken) Ostrikov, Wei-Hung Chiang

Summary: This study reports the development of smart anticancer drug nanocarriers through plasma engineering technique. The nanocarriers containing chitosan and nitrogen-doped graphene quantum dots can release drugs in a pH-responsive manner and exhibit enhanced toughness. The loaded nanocarriers demonstrate improved drug loading capability and stable release, showing great potential in cancer treatment.
Article Chemistry, Multidisciplinary

Energy-Efficient Pathways for Pulsed-Plasma-Activated Sustainable Ammonia Synthesis

Xin Zeng, Shuai Zhang, Yadi Liu, Xiucui Hu, Kostya Ken Ostrikov, Tao Shao

Summary: To meet global net-zero emission targets, sustainable and low-carbon alternatives are urgently needed for energy-intensive industrial processes like ammonia synthesis. In this study, plasma catalysis is used to achieve renewable-electricity-driven ammonia synthesis under mild conditions. By identifying energy loss pathways and optimizing process parameters, such as pulse voltage and gap distance, high ammonia yields with high energy efficiency and low emission footprint are obtained.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Article Chemistry, Multidisciplinary

Controlling Energy Transfer in Plasma-Driven Ammonia Synthesis by Adding Helium Gas

Rusen Zhou, Dejiang Zhou, Baowang Liu, Lanlan Nie, Yubin Xian, Tianqi Zhang, Renwu Zhou, Xinpei Lu, Kostya Ken Ostrikov, Patrick J. Cullen

Summary: The addition of helium can enhance the synthesis of ammonia by modifying the energy transfer mechanism in the plasma, leading to more efficient activation of N2 and production of NH3.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Review Chemistry, Physical

In situ characterisation for nanoscale structure-performance studies in electrocatalysis

Tianlai Xia, Yu Yang, Qiang Song, Mingchuan Luo, Mianqi Xue, Kostya (Ken) Ostrikov, Yong Zhao, Fengwang Li

Summary: Recently, electrocatalytic reactions involving oxygen, nitrogen, water, and carbon dioxide have been developed to produce clean energy, fuels, and chemicals. Understanding catalyst structures, active sites, and reaction mechanisms is crucial for improving performance. In this review, we summarize state-of-the-art in situ characterisation techniques used in electrocatalysis, categorizing them into microscopy, spectroscopy, and other techniques. We discuss the capacities and limits of these techniques to guide further advances in the field.

NANOSCALE HORIZONS (2023)

Review Chemistry, Multidisciplinary

Advances in high-voltage supercapacitors for energy storage systems: materials and electrolyte tailoring to implementation

Jae Muk Lim, Young Seok Jang, Hoai Van T. Nguyen, Jun Sub Kim, Yeoheung Yoon, Byung Jun Park, Dong Han Seo, Kyung-Koo Lee, Zhaojun Han, Kostya (Ken) Ostrikov, Seok Gwang Doo

Summary: To achieve a zero-carbon-emission society, increasing the use of clean and renewable energy is crucial. However, renewable energy resources have limitations in terms of geographical locations and limited time intervals for energy generation. Therefore, there is a rising demand for high-performance energy storage systems (ESSs) to effectively store and utilize energy during peak and off-peak periods. Supercapacitors, particularly electrical double layer capacitors (EDLCs), show promise as short-term ESSs due to their long cycle retention, high power densities, fast charge/discharge characteristics, and moderate operating voltage window. However, further research is needed to increase the operating voltage and energy densities of EDLCs while maintaining long-term cycle stability and power densities, which are crucial for ESS operation. This article examines advancements in EDLC research to achieve a high operating voltage window and high energy densities for next-generation supercapacitor-based ESSs.

NANOSCALE ADVANCES (2023)

Article Engineering, Chemical

Plasma Regeneration of Spent Pd/Al2O3 Catalysts and Their Electrochemical Performance

Liangliang Lin, Yunming Tao, Sergey A. Starostin, Chengdong Li, Hongyu Huang, Ailin He, Yingjun Wu, Volker Hessel, Kostya Ken Ostrikov

Summary: A dielectric barrier discharge (DBD) plasma was used to reactivate spent Pd/Al2O3 catalysts, and the gas composition in the plasma process affected the extent of coke elimination and electrochemical performance of the reactivated catalysts. The electrochemical performance was found to improve with the increase of gas flow rate and treatment time for Ar and N2 gases, but decrease for O2 gas. Higher oxidation degrees of Pd reduced the electrochemical performance. This study presents a new strategy for reusing waste catalysts in a simple and environment-friendly manner.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2023)

Article Physics, Multidisciplinary

Effect of charged dust grains on the electrojet instabilities

Sanjib Sarkar, Jyoti K. Atul, Modhuchandra Laishram, Dandan Zou, Kostya (Ken) Ostrikov

Summary: The Farley-Buneman and Gradient Drift instabilities in a partially ionized dusty electrojet region were investigated using a fluid model. The effects of dissociative electron-ion recombination and dust charge fluctuation on the instabilities were considered. The dispersion relation describing the propagation of electrojet instabilities within the dust ion acoustic range in a magnetized partially ionized dusty plasma was solved numerically and analytically. The results showed that the Gradient Drift instability was unstable at a much longer wavelength compared to the Farley-Buneman instability. The threshold electron drift velocity for Farley-Buneman instability was affected by the charge on dust, with a decrease at lower altitudes and an increase at higher altitudes. Furthermore, the dissociative electron-ion recombination had a stronger damping effect than the dust charge fluctuation on both instabilities.

PHYSICA SCRIPTA (2023)

Article Chemistry, Multidisciplinary

Plasma-Activated Mist: Continuous-Flow, Scalable Nitrogen Fixation, and Aeroponics

Haotian Gao, Guoli Wang, Zhongzheng Huang, Lanlan Nie, Dawei Liu, Xinpei Lu, Guangyuan He, Kostya Ken Ostrikov

Summary: Nitrogen fixation is a crucial process for various biological and industrial processes, but it is also a major source of carbon emissions globally. In this study, a novel approach using plasma-activated mist (PAM) is proposed for efficient and sustainable nitrogen fixation. The PAM system generates nitrogen-fixation species through the reaction of air plasma and water mist, and the liquid-phase nitrogen fixation product is dominated by NO3-. This system is applied to deliver nitrogen-based nutrients directly to plant roots using an aeroponic system, leading to significant improvements in plant growth.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Article Nanoscience & Nanotechnology

Plasma-Enabled Graphene Quantum Dot Hydrogel-Magnesium Composites as Bioactive Scaffolds for In Vivo Bone Defect Repair

Pei-Chun Wong, Darwin Kurniawan, Jia-Lin Wu, Wei-Ru Wang, Kuan-Hao Chen, Chieh-Ying Chen, Ying-Chun Chen, Loganathan Veeramuthu, Chi-Ching Kuo, Kostya Ken Ostrikov, Wei-Hung Chiang

Summary: In this study, a multifunctional metal-based scaffold was developed for bone defect repair by combining nitrogen-doped graphene quantum dot hydrogel and magnesium alloy. Through in vivo study, it was found that this hybrid scaffold promoted faster, more uniform, and directional bone growth, showing great potential for application in bone defect repair.

ACS APPLIED MATERIALS & INTERFACES (2023)

Review Energy & Fuels

Electrochemical Reduction of Carbon Dioxide to Solid Carbon: Development, Challenges, and Perspectives

Xu Han, Kostya Ken Ostrikov, Jeff Chen, Yao Zheng, Xiaoyong Xu

Summary: The persistent utilization of fossil fuels has led to an increase in atmospheric carbon dioxide levels. The electrochemical reduction of carbon dioxide to solid carbon is considered a potential solution to environmental concerns due to its simplicity, precise control, and environmental friendliness. However, the strong carbon-oxygen bond and electrode degradation hinder the commercialization of this technology. Different strategies have been reported, including solid oxide electrolysis, molten salt and liquid metal reduction, and hybrid electro-thermochemical looping. This mini-review provides a systematic analysis of experimental conditions, mechanisms, and product morphologies, serving as a reference for future research in this emerging field.

ENERGY & FUELS (2023)

Article Nanoscience & Nanotechnology

High-performance multilayer WSe2/SnS2 p-n heterojunction photodetectors by two step confined space chemical vapor deposition

Qilei Xu, Qianqian Wu, Chenglin Wang, Xiumei Zhang, Zhengyang Cai, Liangliang Lin, Xiaofeng Gu, Kostya (Ken) Ostrikov, Haiyan Nan, Shaoqing Xiao

Summary: This study employed a two-step KI-assisted confined-space chemical vapor deposition method to prepare multilayer WSe2/SnS2 p-n heterojunctions. The optical characterization and electrical tests revealed clear interfaces and vertical heterostructures, as well as good rectification characteristics and high photoresponse. These performances are likely attributed to the ultra-low dark current generated in the depletion region and the high direct tunneling current during illumination.

NANOTECHNOLOGY (2023)

Review Chemistry, Multidisciplinary

A review on reactive oxygen species (ROS)-inducing nanoparticles activated by uni- or multi-modal dynamic treatment for oncotherapy

Jinyong Lin, Dong Li, Changhong Li, Ziqi Zhuang, Chengchao Chu, Kostya (Ken) Ostrikov, Erik W. W. Thompson, Gang Liu, Peiyu Wang

Summary: Cancer cells are more susceptible to oxidative stress and nanomaterials-based therapies that generate reactive oxygen species (ROS) have been effective in eliminating cancer cells. These therapies, including chemodynamic therapy, photodynamic therapy, sonodynamic therapy, as well as multi-modal therapies such as combination therapy, have shown significant inhibition of tumor growth. However, the limitations of multi-modal therapy in material preparation and operation protocols hinder its clinical application. Cold atmospheric plasma (CAP), as a reliable source of ROS, light, and electromagnetic fields, provides a simple alternative for implementing multi-modal treatments. Therefore, the emerging field of tumor precision medicine is expected to benefit from these promising multi-modal therapies based on ROS-generating nanomaterials and reactive media like CAPs.

NANOSCALE (2023)

暂无数据