4.8 Article

Bioinspired design of mannose-decorated globular lysine dendrimers promotes diabetic wound healing by orchestrating appropriate macrophage polarization

期刊

BIOMATERIALS
卷 280, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2021.121323

关键词

Bioinspired design; Peptide dendrimers; M2 macrophage polarization; Diabetic wound healing

资金

  1. National Natural Science Foundation of China [31871000, 81621003, 32071364]
  2. National Key Research and Development Program of China [2017YFC1103501, 2020YFA0710801]
  3. Scientific Research Foundation for Talent Introduction ofNanjing Tech University [39803132, 39803130]
  4. Priority Academic Program Development of Jiangsu Higher Educa-tion Institutions (PAPD)

向作者/读者索取更多资源

Research has shown that mannose-decorated globular lysine dendrimers (MGLDs) can elicit anti-inflammatory activity by targeting and reprogramming macrophages, which may be beneficial in the therapy of injuries and inflammation.
A large number of cytokines or growth factors have been used in the treatment of inflammation. However, they are highly dependent on an optimal delivery system with sufficient loading efficiency and protection of growth factors from proteolytic degradation. To develop the immunotherapy capacity of peptide dendrimers themselves, inspired by the structure and immunoregulatory functions of mannose-capped lipoarabinomannan (ManLAM), we thus propose a hypothesis that mannose-decorated globular lysine dendrimers (MGLDs) with precise molecular design can elicit anti-inflammatory activity through targeting and reprogramming macrophages to M2 phenotype. To achieve this, a series of mannose-decorated globular lysine dendrimers (MGLDs) was developed. Size-controlled MGLDs obtained were spherical with positive surface charges. The mean size ranged from 50-200 nm in varying generations and modification degrees. The initial screening study revealed that MGLDs have superior biocompatibility. When cocultured with MGLDs, mouse bone marrow-derived macrophages (BMDMs) acquired an anti-inflammatory M2 phenotype characterized by significant mannose receptor (MR) clustering on the cell surface and the elongated shape, an increased production of transforming growth factor (TGF)-beta 1, interleukin (IL)-4 and IL-10, a downregulated secretory of IL-1 beta, IL-6, and tumor necrosis factor (TNF)-alpha, and increased ability to induce fibroblast proliferation. Then in vivo studies further demonstrated that topical administration of optimized MGLDs accelerates wound repair of full-thickness cutaneous defects in type 2 diabetic mice via M2 macrophage polarization. Mechanistically, MGLDs treatment showed an enhanced closure rate, collagen deposition, and angiogenesis, along with mitigated inflammation modulated by a suppressed secretory of pro-inflammation cytokines, and increased production of TGF-beta 1. These findings provide the first evidence that the bioinspired design of MGLDs can direct M2 macrophage polarization, which may be beneficial in the therapy of injuries and inflammation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据