4.7 Article

Quantum compiling by deep reinforcement learning

期刊

COMMUNICATIONS PHYSICS
卷 4, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s42005-021-00684-3

关键词

-

资金

  1. Vista Technology SRL

向作者/读者索取更多资源

Quantum compilers face a trade-off between the length of sequences, the precompilation time, and the execution time. This study introduces a deep reinforcement learning method to approximate unitary operators as circuits, decreasing execution time and potentially enabling real-time quantum compiling.
The general problem of quantum compiling is to approximate any unitary transformation that describes the quantum computation as a sequence of elements selected from a finite base of universal quantum gates. The Solovay-Kitaev theorem guarantees the existence of such an approximating sequence. Though, the solutions to the quantum compiling problem suffer from a tradeoff between the length of the sequences, the precompilation time, and the execution time. Traditional approaches are time-consuming, unsuitable to be employed during computation. Here, we propose a deep reinforcement learning method as an alternative strategy, which requires a single precompilation procedure to learn a general strategy to approximate single-qubit unitaries. We show that this approach reduces the overall execution time, improving the tradeoff between the length of the sequence and execution time, potentially allowing real-time operations. Quantum compilers are characterized by a trade-off between the length of the sequences, the precompilation time, and the execution time. Here, the authors propose an approach based on deep reinforcement learning to approximate unitary operators as circuits, and show that this approach decreases the execution time, potentially allowing real-time quantum compiling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据