4.7 Article

Small-molecule inhibition of APE1 induces apoptosis, pyroptosis, and necroptosis in non-small cell lung cancer

期刊

CELL DEATH & DISEASE
卷 12, 期 6, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41419-021-03804-7

关键词

-

资金

  1. National Natural Science Foundation of China [81872284]
  2. Natural Science Fund of Colleges and Universities in Jiangsu Province [19KJA180010]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

APE1 plays a critical role in NSCLC and its inhibitor NO.0449-0145 induces DNA damage and cell death, overcoming resistance to traditional chemotherapy in NSCLC cells. These findings highlight the therapeutic potential of targeting APE1 in NSCLC and developing small-molecule drugs for the treatment of other cancers.
Apurinic/apyrimidinic endonuclease 1 (APE1) plays a critical role in the base excision repair (BER) pathway, which is responsible for the excision of apurinic sites (AP sites). In non-small cell lung cancer (NSCLC), APE1 is highly expressed and associated with poor patient prognosis. The suppression of APE1 could lead to the accumulation of unrepaired DNA damage in cells. Therefore, APE1 is viewed as an important marker of malignant tumors and could serve as a potent target for the development of antitumor drugs. In this study, we performed a high-throughput virtual screening of a small-molecule library using the three-dimensional structure of APE1 protein. Using the AP site cleavage assay and a cell survival assay, we identified a small molecular compound, NO.0449-0145, to act as an APE1 inhibitor. Treatment with NO.0449-0145 induced DNA damage, apoptosis, pyroptosis, and necroptosis in the NSCLC cell lines A549 and NCI-H460. This inhibitor was also able to impede cancer progression in an NCI-H460 mouse model. Moreover, NO.0449-0145 overcame both cisplatin- and erlotinib-resistance in NSCLC cell lines. These findings underscore the importance of APE1 as a therapeutic target in NSCLC and offer a paradigm for the development of small-molecule drugs that target key DNA repair proteins for the treatment of NSCLC and other cancers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据