4.6 Article

A new method for exploring gene-gene and gene-environment interactions in GWAS with tree ensemble methods and SHAP values

期刊

BMC BIOINFORMATICS
卷 22, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12859-021-04041-7

关键词

GWAS; Tree ensemble models; XGBoost; SHAP; Model explainability; Gene– gene and gene– environment interactions

资金

  1. Research Council of Norway [272402]
  2. PhD Scholarship at SINTEF
  3. Yale School of Public Health

向作者/读者索取更多资源

This study proposes a method based on tree ensemble and SHAP for identifying and interpreting potential gene-gene and gene-environment interactions in large-scale biobank data. It can detect obesity-related genes and interpret and visualize interaction candidates effectively. Further research is needed to evaluate the uncertainties of these interaction candidates.
Background The identification of gene-gene and gene-environment interactions in genome-wide association studies is challenging due to the unknown nature of the interactions and the overwhelmingly large number of possible combinations. Parametric regression models are suitable to look for prespecified interactions. Nonparametric models such as tree ensemble models, with the ability to detect any unspecified interaction, have previously been difficult to interpret. However, with the development of methods for model explainability, it is now possible to interpret tree ensemble models efficiently and with a strong theoretical basis. Results We propose a tree ensemble- and SHAP-based method for identifying as well as interpreting potential gene-gene and gene-environment interactions on large-scale biobank data. A set of independent cross-validation runs are used to implicitly investigate the whole genome. We apply and evaluate the method using data from the UK Biobank with obesity as the phenotype. The results are in line with previous research on obesity as we identify top SNPs previously associated with obesity. We further demonstrate how to interpret and visualize interaction candidates. Conclusions The new method identifies interaction candidates otherwise not detected with parametric regression models. However, further research is needed to evaluate the uncertainties of these candidates. The method can be applied to large-scale biobanks with high-dimensional data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据