4.7 Article

Endoplasmic reticulum stress aggravates copper-induced apoptosis via the PERK/ATF4/CHOP signaling pathway in duck renal tubular epithelial cells

期刊

ENVIRONMENTAL POLLUTION
卷 272, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2020.115981

关键词

Copper; Endoplasmic reticulum stress; Apoptosis; Renal tubular epithelial cell; Duck

资金

  1. National Natural Science Foundation of China [31902333]
  2. Science and Technology Plan of Education Department of Jiangxi Province [GJJ190216]

向作者/读者索取更多资源

Excessive copper can trigger ER stress and apoptosis in duck renal tubular epithelial cells via the PERK/ATF4/CHOP signaling pathway. Treatment with PERK inhibitor can ameliorate the adverse effects caused by copper exposure.
Copper (Cu) is a vital micronutrient required for numerous fundamental biological processes, but excessive Cu poses potential detrimental effects on public and ecosystem health. However, the molecular details linking endoplasmic reticulum (ER) stress and apoptosis in duck renal tubular epithelial cells have not been fully elucidated. In this study, duck renal tubular epithelial cells exposed to Cu sulfate (CuSO4) (0, 100 and 200 mM) and a PERK inhibitor (GSK2606414, GSK, 1 mM) for 12 h were used to investigate the crosstalk between ER stress and apoptosis under Cu exposure. Cell and ER morphological and functional characteristics, intracellular calcium (Ca2+) levels, apoptotic rates, ER stress and apoptosis-related mRNA and protein levels were examined. The results showed that excessive Cu could cause ER expansion and swelling, increase the expression levels of ER stress-associated genes (PERK, eIF2 alpha, ATF4 and CHOP) and proteins (p-PERK and CHOP), induce intracellular Ca2+ overload, upregulate the expression levels of apoptosis-associated genes (Bax, Bak1, Caspase9 and Caspase3) and the cleaved-Caspase3 protein, downregulate Bcl-xl and Bcl2 mRNA levels and trigger apoptosis. PERK inhibitor treatment could ameliorate the above changed factors caused by Cu. In conclusion, these findings indicate that excessive Cu could trigger ER stress via activation of the PERK/ATF4/CHOP signaling pathway and that ER stress might aggravate Cu-induced apoptosis in duck renal tubular epithelial cells. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据