4.7 Article

On the Localization of Plastic Strain in Microtextured Regions of Ti-6Al-4V

期刊

ACTA MATERIALIA
卷 204, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2020.116492

关键词

Titanium; Ti-6Al-4V; Microtextured regions; Crystal plasticity FEM; Strain localization

资金

  1. Air Force Research Laboratory
  2. ONR [N00014-19-2129]
  3. U.S. Naval Research Laboratory under the Office of Naval Research

向作者/读者索取更多资源

The equiaxed microstructure of Ti-6Al-4V alloy contains alpha-phase grains of varying orientations. The presence of microtextured regions can adversely affect the mechanical properties of the alloy, particularly quasi-static and fatigue properties. Studies have shown that orientation spread within microtextured regions facilitates strain localization, and the intensity of microtexture in neighboring regions further influences the extent of strain localization.
The equiaxed microstructure of Ti-6Al-4V contains nominally 10 mu m to 15 mu m alpha-phase grains. Depending on processing, these fine grains may aggregate into large, millimeter-scale regions of similar crystallographic orientation. These so-called microtextured regions are detrimental to quasi-static and fatigue properties. Their presence may facilitate the formation of long-range strain localization-bands of plastic strain that traverse grain boundaries and terminate at the boundaries of the microtextured region which compromises strength and ductility-and can cause early fatigue crack nucleation. Furthermore, the low angle boundaries within microtextured regions offer little resistance to crack growth, and corresponding increases in crack growth rates have been observed in these regions. Despite significant research into the effects of microtextured regions on macroscopic properties, there is still a lack of rigorous definition of what constitutes a microtextured region. To this end, we present a computational study in which deformation simulations are performed to study the effect of the intensity and character of microtexture on the localization of plastic strain. Mean orientation and intensity of microtexture are parameterized in a suite of simulations. Simulations indicate that strain localization is facilitated both by the presence of some amount of orientation spread within a microtextured region, and further by the intensity of microtexture in neighboring regions. Simulations are further discussed with respect to high resolution experimental measurements of intragrain strain in a microtextured Ti-6Al-4V specimen, which exhibit similar mechanical trends. (c) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Multidisciplinary

Boundary characterization using 3D mapping of geometrically necessary dislocations in AM Ta microstructure

Wyatt A. Witzen, Andrew T. Polonsky, Paul F. Rottmann, Kira M. Pusch, McLean P. Echlin, Tresa M. Pollock, Irene J. Beyerlein

Summary: Additive manufacturing of high strength metallic materials produces unique microstructures and defects. This study characterizes the microstructure and defect boundaries of an additive manufactured tantalum (Ta) product using the combination of three-dimensional electron backscattered diffraction (EBSD) and crystallographic geometrically necessary dislocation (GND) theory. The results show that the microstructure of AM Ta is highly oriented along the build direction, but also contains large crystallographic orientation gradients. Analysis reveals the presence of highly misoriented subboundaries with large dislocation densities, forming a complex network throughout the microstructure. TEM measurements confirm the existence of a high dislocation density at the microscale and indicate a cell-like dislocation network structure.

JOURNAL OF MATERIALS SCIENCE (2022)

Article Materials Science, Multidisciplinary

Observation of bulk plasticity in a polycrystalline titanium alloy by diffraction contrast tomography and topotomography

J. C. Stinville, W. Ludwig, P. G. Callahan, M. P. Echlin, V. Valle, T. M. Pollock, H. Proudhon

Summary: This study enables imaging of bulk slip events within the 3D microstructure through the combined use of X-ray diffraction contrast tomography and topotomography. Correlative measurements were performed using various methods to validate the observation of slip events and significant differences were found between bulk and surface grains, highlighting the need for 3D observations to better understand deformation in polycrystalline materials.

MATERIALS CHARACTERIZATION (2022)

Article Chemistry, Physical

Data-driven Bayesian model-based prediction of fatigue crack nucleation in Ni-based superalloys

Maxwell Pinz, George Weber, Jean Charles Stinville, Tresa Pollock, Somnath Ghosh

Summary: This paper develops a probabilistic crack nucleation model for the Ni-based superalloy Rene 88DT under fatigue loading using a Bayesian inference approach. The underlying mechanisms driving crack nucleation are identified through a data-driven, machine learning approach. Experimental fatigue-loaded microstructures are characterized to correlate the grain morphology and crystallography to the crack nucleation sites. A multiscale model, incorporating experimental polycrystalline microstructures, is developed for fatigue simulations.

NPJ COMPUTATIONAL MATERIALS (2022)

Editorial Material Materials Science, Multidisciplinary

Applications of Autonomous Data Collection and Active Learning

Andrew T. Polonsky, Patrick G. Callahan

Article Materials Science, Multidisciplinary

Scan strategies in EBM-printed IN718 and the physics of bulk 3D microstructure development

Andrew T. Polonsky, Narendran Raghavan, McLean P. Echlin, Michael M. Kirka, Ryan R. Dehoff, Tresa M. Pollock

Summary: Three-dimensional characterization is used to understand the processing-structure relationships in additively manufactured materials. In this study, electron beam melting is used to fabricate bulk samples of Inconel 718, and TriBeam tomography and thermal simulation software are used to analyze the microstructural development and predict grain morphologies. The research provides insight into controlling the as-printed microstructure and understanding the competing processes of grain nucleation and epitaxial growth.

MATERIALS CHARACTERIZATION (2022)

Article Multidisciplinary Sciences

Multi-modal Dataset of a Polycrystalline Metallic Material: 3D Microstructure and Deformation Fields

J. C. Stinville, J. M. Hestroffer, M. A. Charpagne, A. T. Polonsky, M. P. Echlin, C. J. Torbet, V. Valle, K. E. Nygren, M. P. Miller, O. Klaas, A. Loghin, I. J. Beyerlein, T. M. Pollock

Summary: The development of high-fidelity mechanical property prediction models relies on large volumes of microstructural feature data. However, spatially correlated measurements of 3D microstructure and deformation fields have been rare. This study presents a unique multi-modal dataset that combines state-of-the-art experimental techniques for 3D tomography and high-resolution deformation field measurements.

SCIENTIFIC DATA (2022)

Article Engineering, Manufacturing

The interplay of local chemistry and plasticity in controlling microstructure formation laser bed fusion of metals

Markus Sudmanns, Andrew J. Birnbaum, Yejun Gu, Athanasios P. Iliopoulos, Patrick G. Callahan, John G. Michopoulos, Jaafar A. El-Awady

Summary: Additive manufacturing of metallic components offers advantages in design flexibility, precision, and mechanical properties. However, understanding the relationship between microstructure and mechanical properties remains a challenge. This study combines experimental and simulation methods to uncover the mechanisms behind the formation of heterogeneous defect structures in additively manufactured metals, providing insights for predicting mechanical properties.

ADDITIVE MANUFACTURING (2022)

Article Materials Science, Multidisciplinary

Subgrain geometrically necessary dislocation density mapping in spalled Ta in three dimensions

Wyatt A. Witzen, McLean P. Echlin, Marie-Agathe Charpagne, Tresa M. Pollock, Irene J. Beyerlein

Summary: This study investigates the intragranular distributions of geometrically necessary dislocations (GNDs) in a polycrystalline tantalum sample under shock compression loading. Using TriBeam tomography, a highly resolved 3D map of the microstructure was obtained, allowing for the examination of grain boundaries, orientations, and voids. By combining the 3D characterization, GND formulation, and a sample with approximately 6000 grains, correlations between GND density per grain and grain characteristics were analyzed. The results show that GND density increases closer to the spall plane and that grains containing voids have high GND density concentrations in the intragranular region surrounding the void.

ACTA MATERIALIA (2023)

Article Multidisciplinary Sciences

On the origins of fatigue strength in crystalline metallic materials

J. C. Stinville, M. A. Charpagne, A. Cervellon, S. Hemery, F. Wang, P. G. Callahan, V. Valle, T. M. Pollock

Summary: In this study, the physical origins of fatigue strength in metallic materials were investigated by observing the nanoscale deformation processes of individual materials at the earliest stages of cycling. The quantitative relationships between yield strength and other physical characteristics were identified, and a method for predicting fatigue strength based on slip localization amplitude was proposed.

SCIENCE (2022)

Article Materials Science, Multidisciplinary

Perspective: Machine learning in experimental solid mechanics

N. R. Brodnik, C. Muir, N. Tulshibagwale, J. Rossin, M. P. Echlin, C. M. Hamel, S. L. B. Kramer, T. M. Pollock, J. D. Kiser, C. Smith, S. H. Daly

Summary: Experimental solid mechanics is experiencing a crucial moment where the integration of machine learning (ML) approaches into the discovery process is rapidly increasing. The adoption of ML methods in mechanics originated from non-science and engineering applications, raising concerns about the reliability of the obtained physical results. To address this, it is necessary to incorporate physical principles into ML architectures, evaluate and compare them using benchmark datasets, and test their broad applicability. These principles allow for meaningful categorization, comparison, evaluation, and extension of ML models across various experimental and computational frameworks. Two different use cases, acoustic emission and resonant ultrasound spectroscopy, are examined to demonstrate the application of these principles and discussions are provided regarding the future prospects of trustworthy ML in experimental mechanics.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2023)

Article Chemistry, Physical

Adaptable physics-based super-resolution for electron backscatter diffraction maps

Devendra K. Jangid, Neal R. Brodnik, Michael G. Goebel, Amil Khan, SaiSidharth Majeti, McLean P. Echlin, Samantha H. Daly, Tresa M. Pollock, B. S. Manjunath

Summary: In computer vision, single-image super-resolution (SISR) has been extensively explored on optical images, but its application on images outside this domain, such as scientific experiment images, is not well investigated. This paper presents a broadly adaptable approach for applying state-of-art SISR networks to generate high-resolution EBSD images.

NPJ COMPUTATIONAL MATERIALS (2022)

Article Materials Science, Multidisciplinary

Investigation of chemical short range order strengthening in a model Fe-12Ni-18Cr (at. %) stainless steel alloy: A modeling and experimental study

Kevin Chu, Edwin Antillon, Colin Stewart, Keith Knipling, Patrick Callahan, Sanne Wu, David Rowenhorst, David L. Mcdowell

Summary: Solid solution strengthening is important for industrial alloys, but chemical short-range order (CSRO) also plays a significant role in alloys with high alloying additions. This study investigates the evolution of CSRO and its impact on the mechanical strength of a Fe-12Ni-18Cr alloy through molecular dynamics simulations, atomistic simulations, and experimental measurements. A modified model that incorporates CSRO into a solute-solution strengthening model is proposed and validated against simulations and experiments.

ACTA MATERIALIA (2023)

Article Engineering, Manufacturing

3D Grain Shape Generation in Polycrystals Using Generative Adversarial Networks

Devendra K. Jangid, Neal R. Brodnik, Amil Khan, Michael G. Goebel, McLean P. Echlin, Tresa M. Pollock, Samantha H. Daly, B. S. Manjunath

Summary: This paper presents a GAN capable of producing realistic microstructure morphology features and demonstrates its capabilities on a dataset of crystalline titanium grain shapes. It also introduces an approach to train deep learning networks to understand material-specific descriptor features based on existing conceptual relationships.

INTEGRATING MATERIALS AND MANUFACTURING INNOVATION (2022)

Article Materials Science, Multidisciplinary

Transmission electron microscopy of the rapid solidification microstructure evolution and solidification interface velocity determination in hypereutectic Al-20at.%Cu after laser melting

Y. Liu, K. Zweiacker, C. Liu, J. T. McKeown, J. M. K. Wiezorek

Summary: The evolution of rapid solidification microstructure and solidification interface velocity of hypereutectic Al-20at.%Cu alloy after laser melting has been studied experimentally. It was found that the formation of microstructure was dominated by eutectic, alpha-cell, and banded morphology grains, and the growth modes changed with increasing interface velocity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Mechanisms for high creep resistance in alumina forming austenitic (AFA) alloys

Bharat Gwalani, Julian Escobar, Miao Song, Jonova Thomas, Joshua Silverstein, Andrew Chihpin Chuang, Dileep Singh, Michael P. Brady, Yukinori Yamamoto, Thomas R. Watkins, Arun Devaraj

Summary: Castable alumina forming austenitic alloys exhibit superior creep life and oxidation resistance at high temperatures. This study reveals the mechanism behind the enhanced creep performance of these alloys by suppressing primary carbide formation and offers a promising alloy design strategy for high-temperature applications.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Achieving atomically flat copper surface: Formation of mono-atomic steps and associated strain energy mechanisms

Jian Song, Qi Zhang, Songsong Yao, Kunming Yang, Houyu Ma, Jiamiao Ni, Boan Zhong, Yue Liu, Jian Wang, Tongxiang Fan

Summary: Recent studies have shown that achieving an atomically flat surface for metals can greatly improve their oxidation resistance and enhance their electronic-optical applications. Researchers have explored the use of graphene as a covering layer to achieve atomically flat surfaces. They found that high-temperature deposited graphene on copper surfaces formed mono-atomic steps, while annealed copper and transferred graphene on copper interfaces formed multi-atomic steps.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Modeling and measurements of creep deformation in laser-melted Al-Ti-Zr alloys with bimodal grain size

Jennifer A. Glerum, Jon-Erik Mogonye, David C. Dunand

Summary: Elemental powders of Al, Ti, Sc, and Zr are blended and processed via laser powder-bed fusion to create binary and ternary alloys. The microstructural analysis and mechanical testing show that the addition of Ti results in the formation of primary precipitates, while the addition of Sc and Zr leads to the formation of fine grain bands. The Al-0.25Ti-0.25Zr alloy exhibits comparable strain rates to Al-0.5Zr at low stresses, but significantly higher strain rates at higher stresses during compressive creep testing. Finite element modeling suggests that the connectivity of coarse and fine grain regions is a critical factor affecting the creep resistance of the alloys.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Characterizing stable nanocrystalline Cu-Ta behavior and failure dynamics under extremes of strain rate, strain, temperature and pressure by modified dynamic tensile extrusion

P. Jannotti, B. C. Hornbuckle, J. T. Lloyd, N. Lorenzo, M. Aniska, T. L. Luckenbaugh, A. J. Roberts, A. Giri, K. A. Darling

Summary: This work characterizes the thermo-mechanical behavior of bulk nanocrystalline Cu-Ta alloys under extreme conditions. The experiments reveal that the alloys exhibit unique mechanical properties, behaving differently from conventional nanocrystalline Cu. They do not undergo grain coarsening during extrusion and exhibit behavior similar to coarse-grained Cu.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Phase-dependent microstructure modification leads to high thermoelectric performance in n-type layered SnSe2

Yiqing Wei, Jingwei Li, Daliang Zhang, Bin Zhang, Zizhen Zhou, Guang Han, Guoyu Wang, Carmelo Prestipino, Pierric Lemoine, Emmanuel Guilmeau, Xu Lu, Xiaoyuan Zhou

Summary: This study proposes a new strategy to modify microstructure by phase regulation, which can simultaneously enhance carrier mobility and reduce lattice thermal conductivity. The addition of Cu in layered SnSe2 induces a phase transition that leads to increased grain size and reduced stacking fault density, resulting in improved carrier mobility and lower lattice thermal conductivity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Selective oxidation and nickel enrichment hinders the repassivation kinetics of multi-principal element alloy surfaces

Jia Chen, Zhengyu Zhang, Eitan Hershkovitz, Jonathan Poplawsky, Raja Shekar Bhupal Dandu, Chang-Yu Hung, Wenbo Wang, Yi Yao, Lin Li, Hongliang Xin, Honggyu Kim, Wenjun Cai

Summary: In this study, the structural origin of the pH-dependent repassivation mechanisms in multi-principal element alloys (MPEA) was investigated using surface characterization and computational simulations. It was found that selective oxidation in acidic to neutral solutions leads to enhanced nickel enrichment on the surface, resulting in reduced repassivation capability and corrosion resistance.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Rate-dependent transition of dislocation mechanisms in a magnesium alloy

X. Y. Xu, C. P. Huang, H. Y. Wang, Y. Z. Li, M. X. Huang

Summary: The limited slip systems of magnesium (Mg) and its alloys hinder their wide applications. By conducting tensile straining experiments, researchers discovered a rate-dependent transition in the dislocation mechanisms of Mg alloys. At high strain rates, glissile dislocations dominate, while easy-glide dislocations dominate at low strain rates. Abundant glissile dislocations do not necessarily improve ductility.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of temperature on detwinning and mechanical properties of face-centered cubic deformation twins

M. S. Szczerba, M. J. Szczerba

Summary: Inverse temperature dependences of the detwinning stress were observed in face-centered cubic deformation twins in Cu-8at.%Al alloy. The detwinning stress increased with temperature when the pi detwinning mode was involved, but decreased when the pi/3 mode was involved. The dual effect of temperature on the detwinning stress was due to the reduction of internal stresses pre-existing within the deformation twins. The complete reduction of internal stresses at about 530 degrees C led to the equivalence of the critical stresses of different detwinning modes and a decrease in the yield stress anisotropy of the twin/matrix structure.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Nature of the electric double layer to modulate the electrochemical behaviors of Fe2O3 electrode

Taowen Dong, Tingting Qin, Wei Zhang, Yaowen Zhang, Zhuoran Feng, Yuxiang Gao, Zhongyu Pan, Zixiang Xia, Yan Wang, Chunming Yang, Peng Wang, Weitao Zheng

Summary: The interaction between the electrode and the electric double layer (EDL) significantly influences the energy storage mechanism. By studying the popular alpha-Fe2O3 electrode and the EDL interaction, we find that the energy storage mechanism of the electrode can be controlled by modulating the EDL.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Grain scale bursts of plasticity in Mg-4Zn via high energy X-rays: Towards twin observation in real-time

Matthew R. Barnett, Jun Wang, Sitarama R. Kada, Alban de Vaucorbeil, Andrew Stevenson, Marc Fivel, Peter A. Lynch

Summary: The elastic-plastic transition in magnesium alloy Mg-4.5Zn exhibits bursts of deformation, which are characterized by sudden changes in grain orientation. These bursts occur in a coordinated manner among nearby grains, with the highest burst rate observed at the onset of full plasticity. The most significant burst events are associated with twinning, supported by the observation of twinned structures using electron microscopy. The bursts are often preceded and followed by a stasis in peak movement, indicating a certain "birth size" for twins upon formation and subsequent growth at a later stage.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Atomistic simulations and machine learning of solute grain boundary segregation in Mg alloys at finite temperatures

Vaidehi Menon, Sambit Das, Vikram Gavini, Liang Qi

Summary: Understanding solute segregation thermodynamics is crucial for investigating grain boundary properties. The spectral approach and thermodynamic integration methods can be used to predict solute segregation behavior at grain boundaries and compare with experimental observations, thus aiding in alloy design and performance control.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Integrating abnormal thermal expansion and ultralow thermal conductivity into (Cd,Ni)2Re2O7 via synergy of local structure distortion and soft acoustic phonons

Feiyu Qin, Lei Hu, Yingcai Zhu, Yuki Sakai, Shogo Kawaguchi, Akihiko Machida, Tetsu Watanuki, Yue-Wen Fang, Jun Sun, Xiangdong Ding, Masaki Azuma

Summary: This study reports on the negative and zero thermal expansion properties of Cd2Re2O7 and Cd1.95Ni0.05Re2O7 materials, along with their ultra-low thermal conductivity. Through investigations of their structures and phonon calculations, the synergistic effect of local structure distortion and soft phonons is revealed as the key to achieving these distinctive properties.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Semi-automatic miniature specimen testing method to characterize the plasticity and fracture properties of metals

Thomas Beerli, Christian C. Roth, Dirk Mohr

Summary: A novel testing system for miniature specimens is designed to characterize the plastic response of materials for which conventional full-size specimens cannot be extracted. The system has an automated operation process, which reduces the damage to specimens caused by manual handling and improves the stability of the test results. The experiments show that the miniature specimens extracted from stainless steel and aluminum have high reproducibility, and the results are consistent with those of conventional-sized specimens. A correction procedure is provided to consider the influence of surface roughness and heat-affected zone caused by wire EDM.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of microstructure and film composition on the mechanical properties of linear antenna CVD diamond thin films

Rani Mary Joy, Paulius Pobedinskas, Nina Baule, Shengyuan Bai, Daen Jannis, Nicolas Gauquelin, Marie-Amandine Pinault-Thaury, Francois Jomard, Kamatchi Jothiramalingam Sankaran, Rozita Rouzbahani, Fernando Lloret, Derese Desta, Jan D'Haen, Johan Verbeeck, Michael Frank Becker, Ken Haenen

Summary: This study investigates the influence of film microstructure and composition on the Young's modulus and residual stress in nanocrystalline diamond thin films. The results provide insights into the mechanical properties and intrinsic stress sources of these films, and demonstrate the potential for producing high-quality nanocrystalline diamond films under certain conditions.

ACTA MATERIALIA (2024)