4.7 Article

ABT-263 Reduces Hypertrophic Scars by Targeting Apoptosis of Myofibroblasts

期刊

FRONTIERS IN PHARMACOLOGY
卷 11, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphar.2020.615505

关键词

ABT-263; hypertrophic scar; apoptosis; myofibroblast; skin

资金

  1. National Key R&D Program of China [2019YFA0110503]
  2. Youth Incubation Plan of the Military Medical Science and Technology [20QNPY035]
  3. National Nature Science Foundation of China [82072170, 81701905, 81772076, 81871559, 81571897]
  4. CAMS Innovation Fund for Medical Sciences [2019-I2M-5-076]
  5. Shanghai health system excellent talent training program [2017BR037]

向作者/读者索取更多资源

ABT-263 exhibits therapeutic potential in treating hypertrophic scars by inducing apoptosis and inhibiting proliferation of myofibroblasts. Its mechanism involves releasing BIM from prosurvival proteins to selectively induce myofibroblast apoptosis, while also reducing the expression of fibrotic markers.
Background: Inhibiting proliferation and inducing apoptosis of myofibroblasts is becoming one of the promising and effective ways to treat hypertrophic scar. ABT-263, as an orally bioavailable BCL-2 family inhibitor, has showed great antitumor characteristics by targeting tumor cell apoptosis. The objective of this study was to explore whether ABT-263 could target apoptosis of overactivated myofibroblasts in hypertrophic scar. Methods: In vivo, we used ABT-263 to treat scars in a rabbit ear scar model. Photographs and ultrasound examination were taken weekly, and scars were harvested on day 42 for further Masson trichrome staining. In vitro, the expression levels of BCL-2 family members, including prosurvival proteins, activators, and effectors, were detected systematically in hypertrophic scar tissues and adjacent normal skin tissues, as well as in human hypertrophic scar fibroblasts (HSFs) and human normal dermal fibroblasts (HFBs). The roles of ABT-263 in apoptosis and proliferation of HSFs and HFBs were determined by annexin V/PI assay, CCK-8 kit, and cell cycle analysis. Mitochondrial membrane potential was evaluated by JC-1 staining and the expression of type I/III collagen and alpha-SMA was measured by PCR, western blotting, and immunofluorescence staining. Furthermore, immunoprecipitation was performed to explore the potential mechanism. Results: In vivo, ABT-263 could significantly improve the scar appearance and collagen arrangement, decrease scar elevation index (SEI), and induce cell apoptosis. In vitro, the expression levels of BCL-2, BCL-XL, and BIM were significantly higher in scar tissues and HSFs than those in normal skin tissues and HFBs. ABT-263 selectively induced HSFs apoptosis by releasing BIM from binding with prosurvival proteins. Moreover, ABT-263 inhibited HSFs proliferation and reduced the expression of alpha-SMA and type I/III collagen in a concentration- and time- dependent manner. Conclusion: HSFs showed increased mitochondrial priming with higher level of proapoptotic activator BIM and were primed to death. ABT-263 showed great therapeutic ability in the treatment of hypertrophic scar by targeting HSFs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据