4.7 Article

Kinetics of deformation-induced martensitic transformation under cyclic loading conditions

期刊

SCRIPTA MATERIALIA
卷 189, 期 -, 页码 53-57

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.scriptamat.2020.08.003

关键词

Austenitic steels; Martensitic phase transformation; Low cycle fatigue; Electron backscattering diffraction; Villari effect

资金

  1. China Natural Science Foundation [51775294]

向作者/读者索取更多资源

Deformation-induced martensitic transformation (DIMT) has been investigated for many years mainly under monotonic loading conditions. However, the evolution of the DIMT under non-monotonic loading conditions has rarely been studied. The present work experimentally explored the development of DIMT under tension-compression as well as torsion cyclic loading conditions and showed fluctuating behavior within loading cycles in austenitic stainless steels measured by Feritscope, which was not observed under monotonic loadings. The present study showed that the fluctuation of the martensite measurement was related to the dual-phase features and could be explained by the Villari effect in the martensite phase. The martensite contents are assumed to increase monotonically with the effective plastic strain and are distributed along with principal stresses. A unified kinetics model for DIMT was proposed for both monotonic and cyclic loading conditions and verified experimentally. The anisotropic development of DIMT can be described by the model in combining with cyclic plasticity. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Mechanical

Life assessment of anisotropic low cycle fatigue of nickel-base single crystal superalloy

Cheng Luo, Huang Yuan

Summary: In this study, the anisotropic low cycle fatigue behavior of nickel-base single crystal superalloy was investigated in different crystal orientations. Fractography analysis revealed the activated slip systems under tension and a virtual resolved strain energy model was proposed to describe the anisotropic fatigue behavior.

INTERNATIONAL JOURNAL OF FATIGUE (2023)

Article Engineering, Mechanical

Stress shielding in laser melting multilayered nickel-base superalloys under monotonic and cyclic loadings

Tinglian Zhang, Huang Yuan

Summary: This study investigated the mechanical properties and fatigue performance of laser melted mismatching nickel-base superalloys through multiscale experiments and computations. It was confirmed that the local strength degradation does not affect the macroscopic stress-strain responses and overall low-cycle fatigue performance due to the stress shielding in the remelting material. The stress shielding mechanism was quantitatively illuminated, and a critical shielding criterion was established.

INTERNATIONAL JOURNAL OF FATIGUE (2023)

Article Engineering, Mechanical

An FEM-based homogenization method for orthogonal lattice metamaterials within micropolar elasticity

Lihao Huang, Huang Yuan, Haiyan Zhao

Summary: Lattice metamaterials are increasingly used in weight-critical applications, and additive manufacturing technology provides more design freedoms. A new homogenization method based on finite element methods was proposed for accurate modeling of the mechanical behavior of complex microstructures. The mapping relation between lattice and finite element mesh, as well as edge effects, were clarified and modeled. The homogenization approach showed high numerical accuracy and outperformed the classical continuum model.

INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES (2023)

Article Engineering, Mechanical

Microstructural characteristics and its correlation to mechanical properties of additively manufactured nickel-base superalloy upon heat treatments

Changhao Pei, Huang Yuan

Summary: This study investigated the anisotropic mechanical properties of IN718 superalloy in three different heat treatment states and three loading directions. The differences in mechanical performances were attributed to precipitation hardening and the impediment of dislocation motion from delta particles. Preferential epitaxial grain growth and resulting ⟨100⟩ texture were considered responsible for the anisotropic tensile strength. Weibull distribution and area-weighted grain diameter were used to characterize the grain distributions. Hall-Petch relation was established to correlate directional grain size and yield strength, illustrating the dominance of precipitates in strengthening mechanisms and the effects of subgrain boundaries.

FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES (2023)

Article Engineering, Mechanical

Analysis of temperature gradients in thin-walled structures under thermomechanical fatigue loading conditions

Jiawei Xu, Huang Yuan

Summary: In recent investigations of thermal gradient mechanical fatigue (TGMF), it has been confirmed that the fatigue lives of materials are greatly affected by temperature gradients. Determining temperature gradients in thin-walled structures is always challenging. This study experimentally and computationally examined tubular specimens under different conditions. By improving the inverse heat conduction method, two models were developed that accurately predict temperature gradients in TGMF experiments with reasonable accuracy and versatility.

INTERNATIONAL JOURNAL OF FATIGUE (2023)

Article Engineering, Mechanical

Machine learning based very-high-cycle fatigue life prediction of AlSi10Mg alloy fabricated by selective laser melting

Tao Shi, Jingyu Sun, Jianghua Li, Guian Qian, Youshi Hong

Summary: Using machine learning models and data interpolation, the influence of defect features on the fatigue performance of selective laser melted AlSi10Mg alloys was investigated. The results showed that increasing defect distance, circularity, and layer thickness improved fatigue life, while increasing stress amplitude, stress ratio, and defect size decreased fatigue life.

INTERNATIONAL JOURNAL OF FATIGUE (2023)

Article Engineering, Mechanical

A hierarchical mechanism-informed neural network approach for assessing fretting fatigue of dovetail joints

Yujin Liu, Huang Yuan

Summary: In this paper, a hierarchical mechanism-informed neural network (HMNN) life prediction method was proposed. Fretting fatigue was addressed in four neural network layers, each focusing on a specific type of fatigue. The HMNN approach accurately predicts various kinds of fatigue and offers a new method for assessing complex fatigue.

INTERNATIONAL JOURNAL OF FATIGUE (2023)

Article Engineering, Mechanical

Anisotropic thermomechanical fatigue of a nickel-base single-crystal superalloy Part I: Effects of crystal orientations and damage mechanisms

Cheng Luo, Huang Yuan

Summary: This study investigated the thermomechanical fatigue behavior of nickel-base single-crystal superalloy with different crystal orientations. The crack initiation modes and damage mechanisms were characterized using SEM and optical microscopy. In IP-TMF, creep damage originated from casting pores and propagated under mode I. The creep facets were influenced by activated slip systems, while fatigue damage depended on crystal orientation and developed by slipping along different crystallographic planes. In OP-TMF tests, oxidation-assisted cracking was non-crystallographic for all crystal orientations, with the crack growing within the oxidized material.

INTERNATIONAL JOURNAL OF FATIGUE (2023)

Article Materials Science, Multidisciplinary

A framework to simulate the crack initiation and propagation in very-high-cycle fatigue of an additively manufactured AlSi10Mg alloy

Jingyu Sun, Guian Qian, Jianghua Li, Ruiyang Li, Zhimo Jian, Youshi Hong, Filippo Berto

Summary: Currently, there is no systematic approach to simulate the microstructure sensitive crack initiation and propagation process in very-high-cycle fatigue. In this study, a computational framework combining crystal plasticity and cohesive zone model is developed to simulate the defect-induced short crack growth in an additively manufactured AlSi10Mg alloy. The framework can control the crack growth rate and the proportion of crack initiation damage in the total damage. An acceleration strategy is proposed to improve the computational efficiency for very-high-cycle fatigue. Experimental observations and simulation results show good agreement.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2023)

Article Mechanics

Characterization of crack-tip fields for elastoplastic fatigue crack growth Part II: Effects of crack closure and in-plane constraint

Meiling Xu, Huang Yuan

Summary: This study investigates the crack-tip stress fields of elastoplastic fatigue crack growth with crack closure and their correlation to the Delta J-integral. The computational results show that the singularity of the effective stress ranges during the opening process decreases with increasing crack closure, while the effective stress ranges during the closing process follow the HRR solution form. The farfield Delta J(eff)-integral is proposed to characterize the stress at the crack tip during the closing process, which is independent of the loading ratio and the path dependence of the Delta J-integral. The proposed estimation formula for the effective Delta J(eff)-integral is applicable to different loading ratios and plastic hardening materials based on extensive FEM computations. The in-plane constraint effects in fatigue crack growth can be quantified using the J - Q concept of elastoplastic fracture mechanics within the framework of Delta J(eff)-Q characterization.

ENGINEERING FRACTURE MECHANICS (2023)

Article Engineering, Mechanical

Effects of creep and oxidation to thermomechanical fatigue life assessment for nickel-based superalloy

Jiaqi Lu, Huang Yuan

Summary: This study focuses on quantifying creep and oxidation effects to predict isothermal and thermomechanical fatigue life in a nickel-based superalloy. Creep damage was evaluated using the time-fraction method and the ductility-exhaustion method. A diffusion-dominated environmental damage parameter based on oxygen-assisted intergranular cracking mechanism was proposed and applied to thermomechanical fatigue life assessment. The results suggest that creep damage is negligible while environmental damage appears to be more dominant in this study. The proposed model provides a unified description for both isothermal and thermomechanical fatigue.

INTERNATIONAL JOURNAL OF FATIGUE (2023)

Article Engineering, Mechanical

Quantitative representation of directional microstructures of single-crystal superalloys in cyclic crystal plasticity based on neural networks

Huanbo Weng, Huang Yuan

Summary: This study investigates the correlation between fabric tensor and anisotropic cyclic crystal plasticity of nickel-based single-crystal alloys using neural networks. Microstructural representative volume elements with different single crystal morphologies were generated, and their deformation behaviors were studied under different loading conditions. The results confirmed that the fabric tensor can describe the mechanical behavior and capture the history-dependent anisotropic cyclic hardening or softening behavior of the material.

INTERNATIONAL JOURNAL OF PLASTICITY (2023)

Article Materials Science, Multidisciplinary

Multiaxial fatigue life estimation based on weight-averaged maximum damage plane under variable amplitude loading

Zhi-Qiang Tao, Guian Qian, Xiang Li, Jingyu Sun, Zi-Ling Zhang, Dao-Hang Li

Summary: This article proposes an innovative approach for determining the critical plane with weight-averaged largest fatigue damage, considering the failure modes of materials. Depending on the shear cracking behavior or tensile failure behavior of the material, an appropriate critical plane model is selected, and a multiaxial fatigue lifetime estimation methodology is established. Validation results using six materials demonstrate that the proposed methodology accurately estimates the orientation angles of failure planes and provides satisfactory fatigue lifetime estimations for both shear and tensile failure mode materials. Furthermore, the critical plane framework can be extended to stress-based fatigue criteria, and prediction results are in good agreement with experimental data for two additional materials.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2023)

Article Nanoscience & Nanotechnology

High dielectric temperature stability in the relaxor ferroelectric thin films via using a multilayer heterostructure

Jie Zhang, Xiaoyang Chen, MingJian Ding, Jiaqiang Chen, Ping Yu

Summary: This study enhances the compositional inhomogeneity of relaxor ferroelectric thin films to improve their dielectric temperature stability. The prepared films exhibit a relatively high dielectric constant and a very low variation ratio of dielectric constant over a wide temperature range.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

A rational proton compensation strategy of polyaniline-MnO2 hybrid structure for promoting dual ion storage of Zn-ion battery

Xiaoyu Chen, Ranran Zhang, Hao Zou, Ling Li, Qiancheng Zhu, Wenming Zhang

Summary: Polyaniline-manganese dioxide composites exhibit high conductivity, long discharge platform, and stable circulation, and the specific capacity is increased by providing additional H+ ions to participate in the reaction.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

High-resolution reconstruction-based investigation of multi-scale lamellar microstructures by coupled crystal plasticity and in-situ experiment

Xutao Huang, Yinping Chen, Jianjun Wang, Gang Lu, Wenxin Wang, Zan Yao, Sixin Zhao, Yujie Liu, Qian Li

Summary: This study aims to establish a novel approach to better understand and predict the behavior of materials with multi-scale lamellar microstructures. High-resolution reconstruction and collaborative characterization methods are used to accurately represent the microstructure. The mechanical properties of pearlite are investigated using crystal plasticity simulation and in-situ scanning electron microscopy tensile testing. The results validate the reliability of the novel strategy.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Planar fault transformation and unfaulting of interstitial dislocation loops in irradiated L12-Ni3Al

Cheng Chen, Fanchao Meng, Jun Song

Summary: This study systematically investigated the unfaulting mechanism of single-layer interstitial dislocation loops in irradiated L12-Ni3Al. The unfaulting routes of the loops were uncovered and the symmetry breaking during the unfaulting processes was further elucidated. A continuum model was formulated to analyze the energetics of the loops and predict the unfaulting threshold.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

On the co-nucleation of adjoining twin pairs at grain boundaries in hexagonal close-packed materials

Darshan Bamney, Laurent Capolungo

Summary: This work investigates the formation of adjoining twin pairs (ATPs) at grain boundaries (GBs) in hexagonal close-packed (hcp) metals, focusing on the co-nucleation (CN) of pairs of deformation twins. A continuum defect mechanics model is proposed to study the energetic feasibility of CN of ATPs resulting from GB dislocation dissociation. The model reveals that CN is preferred over the nucleation of a single twin variant for low misorientation angle GBs. Further analysis considering GB character and twin system alignment suggests that CN events could be responsible for ATP formation even at low m' values.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Sharp/diffuse antiferroelectric-ferroelectric phase transition regulated by atomic displacement ordering

Bing Han, Zhengqian Fu, Guoxiang Zhao, Xuefeng Chen, Genshui Wang, Fangfang Xu

Summary: This study investigates the behavior of electric-field induced antiferroelectric to ferroelectric (AFE-FE) phase transition and reveals the evolution of atomic displacement ordering as the cause for the transition behavior changing from sharp to diffuse. The novel semi-ordered configuration results from the competing interaction between long-range displacement modulation and compositional inhomogeneity, which leads to a diffuse AFE-FE transition while maintaining the switching field.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Size-effects in tensile fracture of rejuvenated and annealed metallic glass

Akib Jabed, Golden Kumar

Summary: This study demonstrates that cryogenic rejuvenation promotes homogeneous-like flow and increases ductility in metallic glass samples. Conversely, annealing has the opposite effect, resulting in a smoother fracture surface.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Heterogeneous distribution of isothermal ω precipitates prevents brittle fracture in aged β-Ti alloys

Xin Ji, Yan Chong, Satoshi Emura, Koichi Tsuchiya

Summary: A heterogeneous microstructure in Ti-15Mo-3Al alloy with heterogeneous distributions of Mo element and omega(iso) precipitates has achieved a four-fold increase in tensile ductility without a loss of tensile strength, by blocking the propagation of dislocation channels and preventing the formation of micro-cracks.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Machine-learning-aided density functional theory calculations of stacking fault energies in steel

Amit Samanta, Prasanna Balaprakash, Sylvie Aubry, Brian K. Lin

Summary: This study proposes a combined large-scale first principles approach with machine learning and materials informatics to quickly explore the chemistry-composition space of advanced high strength steels (AHSS). The distribution of aluminum and manganese atoms in iron is systematically explored using first principles calculations to investigate low stacking fault energy configurations. The use of an automated machine learning tool, DeepHyper, speeds up the computational process. The study provides insights into the distribution of aluminum and manganese atoms in systems containing stacking faults and their effects on the equilibrium distribution.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

A physics-constrained neural network for crystal plasticity modelling of FCC materials

Guowei Zhou, Yuanzhe Hu, Zizheng Cao, Myoung Gyu Lee, Dayong Li

Summary: In this work, a physics-constrained neural network is used to predict grain-level responses in FCC material by incorporating crystal plasticity theory. The key feature, shear strain rate of slip system, is identified based on crystal plasticity and incorporated into the loss function as physical constitutive equations. The introduction of physics constraints accelerates the convergence of the neural network model and improves prediction accuracy, especially for small-scale datasets. Transfer learning is performed to capture complex in-plane deformation of crystals with any initial orientations, including cyclic loading and arbitrary non-monotonic loading.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Lanthanum and tungsten co-doped ruthenium dioxide for fresh/sea-water alkaline hydrogen evolution reaction

Pengfei Yang, Qichang Li, Zhongying Wang, Yuxiao Gao, Wei Jin, Weiping Xiao, Lei Wang, Fusheng Liu, Zexing Wu

Summary: In this study, the HER performance of Ru-based catalysts is significantly improved through the dual-doping strategy. The obtained catalyst exhibits excellent performance in alkaline freshwater and alkaline seawater, and can be stably operated in a self-assembled overall water splitting electrolyzer.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Five-fold twin structures in sputter-deposited nickel alloy films

Ilias Bikmukhametov, Garritt J. Tucker, Gregory B. Thompson

Summary: Depositing a Ni-1at. % P film can facilitate the formation of multiple quintuple twin junctions, resulting in a five-fold twin structure and a pentagonal pyramid surface topology. The ability to control material structures offers opportunities for creating novel surface topologies, which can be used as arrays of field emitters or textured surfaces.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Explainable predictions of multi-component oxides enabled by attention-based neural networks

Zening Yang, Weiwei Sun, Zhengyu Sun, Mutian Zhang, Jin Yu, Yubin Wen

Summary: Multicomponent oxides (MCOs) have wide applications and accurately predicting their thermal expansion remains challenging. This study introduces an innovative attention-based deep learning model, which achieves improved performance by using two self-attention modules and demonstrates adaptability and interpretability.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Relating the combinatorial materials chip mapping to the glass-forming ability of bulk metallic glasses via diffraction peak width

Ze Liu, Cai Chen, Yuanxun Zhou, Lanting Zhang, Hong Wang

Summary: This study attempts to address the gap in cooling rates between thin film deposition and bulk metallic glass (BMG) casting by correlating the glass-forming range (GFR) determined from combinatorial materials chips (CMCs) with the glass-forming ability (GFA) of BMG. The results show that the full-width at half maximum (FWHM) of the first sharp diffraction peak (FSDP) is a good indicator of BMG GFA, and strong positive correlations between FWHM and the critical casting diameter (Dmax) are observed in various BMG systems. Furthermore, the Pearson correlation coefficients suggest possible similarities in the GFA natures of certain BMG pairs.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Effect of stacking fault energy on the thickness and density of annealing twins in recrystallized FCC medium and high-entropy alloys

Mike Schneider, Jean-Philippe Couzinie, Amin Shalabi, Farhad Ibrahimkhel, Alberto Ferrari, Fritz Koermann, Guillaume Laplanche

Summary: This work aims to predict the microstructure of recrystallized medium and high-entropy alloys, particularly the density and thickness of annealing twins. Through experiments and simulations, a database is provided for twin boundary engineering in alloy development. The results also support existing theories and empirical relationships.

SCRIPTA MATERIALIA (2024)