4.7 Article

PAX4 preserves endoplasmic reticulum integrity preventing beta cell degeneration in a mouse model of type 1 diabetes mellitus

期刊

DIABETOLOGIA
卷 59, 期 4, 页码 755-765

出版社

SPRINGER
DOI: 10.1007/s00125-016-3864-0

关键词

Beta cell degeneration; ER homeostasis; PAX4; RIP-B7.1; Type 1 diabetes

资金

  1. Consejeria de Salud
  2. Fundacion Publica Andaluza Progreso y Salud
  3. Junta de Andalucia [PI-0727-2010, PI-0085-2013]
  4. Consejeria de Economia, Innovacion y Ciencia [P10.CTS.6359]
  5. Ministerio de Ciencia e Innovacion [BFU2013-42789-P]
  6. Ministerio de Economia y Competidividad, Instituto de Salud Carlos III - Fondos FEDER [PI10/00871, PI13/00593]
  7. JDRF subsidy [17-2013-372]
  8. Miguel Servet grant from the Instituto de Salud Carlos III - Fondos FEDER [CP14/00105]
  9. Juan de la Cierva Fellowship
  10. Swiss National Science Foundation [310030-141162]
  11. European Union grant IMIDIA [C2008-T7]
  12. Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
  13. MRC [MR/K001744/1, G0900740] Funding Source: UKRI
  14. NERC [NBAF010003] Funding Source: UKRI
  15. Medical Research Council [G0900740, MR/K001744/1] Funding Source: researchfish
  16. Natural Environment Research Council [NBAF010003] Funding Source: researchfish

向作者/读者索取更多资源

Aims/hypothesis A strategy to enhance pancreatic islet functional beta cell mass (BCM) while restraining inflammation, through the manipulation of molecular and cellular targets, would provide a means to counteract the deteriorating glycaemic control associated with diabetes mellitus. The aims of the current study were to investigate the therapeutic potential of such a target, the islet-enriched and diabetes-linked transcription factor paired box 4 (PAX4), to restrain experimental autoimmune diabetes (EAD) in the RIP-B7.1 mouse model background and to characterise putative cellular mechanisms associated with preserved BCM. Methods Two groups of RIP-B7.1 mice were genetically engineered to: (1) conditionally express either PAX4 (BPTL) or its diabetes-linked mutant variant R129W (mutBPTL) using doxycycline (DOX); and (2) constitutively express luciferase in beta cells through the use of RIP. Mice were treated or not with DOX, and EAD was induced by immunisation with a murine preproinsulin II cDNA expression plasmid. The development of hyperglycaemia was monitored for up to 4 weeks following immunisation and alterations in the BCM were assessed weekly by non-invasive in vivo bioluminescence intensity (BLI). In parallel, BCM, islet cell proliferation and apoptosis were evaluated by immunocytochemistry. Alterations in PAX4- and PAX4R129W-mediated islet gene expression were investigated by microarray profiling. PAX4 preservation of endoplasmic reticulum (ER) homeostasis was assessed using thapsigargin, electron microscopy and intracellular calcium measurements. Results PAX4 overexpression blunted EAD, whereas the diabetes-linked mutant variant PAX4R129W did not convey protection. PAX4-expressing islets exhibited reduced insulitis and decreased beta cell apoptosis, correlating with diminished DNA damage and increased islet cell proliferation. Microarray profiling revealed that PAX4 but not PAX4R129W targeted expression of genes implicated in cell cycle and ER homeostasis. Consistent with the latter, islets overexpressing PAX4 were protected against thapsigargin-mediated ER-stress-related apoptosis. Luminal swelling associated with ER stress induced by thapsigargin was rescued in PAX4-overexpressing beta cells, correlating with preserved cytosolic calcium oscillations in response to glucose. In contrast, RNA interference mediated repression of PAX4-sensitised MIN6 cells to thapsigargin cell death. Conclusions/interpretation The coordinated regulation of distinct cellular pathways particularly related to ER homeostasis by PAX4 not achieved by the mutant variant PAX4R129W alleviates beta cell degeneration and protects against diabetes mellitus. The raw data for the RNA microarray described herein are accessible in the Gene Expression Omnibus database under accession number GSE62846.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据