4.6 Article

Enhanced Oxygen Evolution via Electrochemical Water Oxidation using Conducting Polymer and Nanoparticle Composites

期刊

CHEMISTRY-AN ASIAN JOURNAL
卷 15, 期 24, 页码 4358-4367

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/asia.202001163

关键词

nano-Co3O4; conducting polymers; polypyrrole; water oxidation; impedance spectroscopy

资金

  1. Deanship of Scientific Research (DSR) at King Fahd University of Petroleum & Minerals (KFUPM) [DF181015]

向作者/读者索取更多资源

Nano-Co3O4 was used for electrocatalytic water oxidation due to its promising features of better performance and low cost. An enhanced electrochemical water oxidation performance of the nanoparticles can be achieved by mixing them with other types of highly conductive nano/micro-structured materials. Conductive polymers would be one of the candidates to achieve this goal. Here, we report our recently developed nano-Co3O4 and polypyrrole composites for enhanced electrochemical water oxidation. We chose polypyrrole as a support of nano-Co3O4 to obtain highly active sites of nano-Co3O4 with high conductivity. Morphological and chemical characterization of the prepared materials were performed using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). After immobilizing them individually on fluorine doped tin oxide (FTO) substrate, their electrocatalytic properties toward water oxidation were investigated. The optimum composite materials showed significantly higher electrocatalytic properties compared to that of pure nano-Co3O4 and polypyrrole. Electrochemical impedance studies indicated that the composite materials possess significantly less electron transfer resistance toward water oxidation reaction compared to that of only polypyrrole or nano-Co3O4, while the higher double-layer capacitance and polarization resistance values obtained from fitting of the impedance data represent the faster electrode kinetics in the composite electrocatalyst. Due to the synergetic effect, the optimum nano-Co3O4 and polypyrrole composites could be represent a novel and promising material for water oxidation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据