4.6 Article

PyClone-VI: scalable inference of clonal population structures using whole genome data

期刊

BMC BIOINFORMATICS
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12859-020-03919-2

关键词

Cancer; Tumour heterogeneity; Cancer evolution; Bayesian statistics

资金

  1. Michael Smith Foundation for Health Research Scholar Award [18245]

向作者/读者索取更多资源

Background: At diagnosis tumours are typically composed of a mixture of genomically distinct malignant cell populations. Bulk sequencing of tumour samples coupled with computational deconvolution can be used to identify these populations and study cancer evolution. Existing computational methods for populations deconvolution are slow and/or potentially inaccurate when applied to large datasets generated by whole genome sequencing data. Results: We describe PyClone-VI, a computationally efficient Bayesian statistical method for inferring the clonal population structure of cancers. We demonstrate the utility of the method by analyzing data from 1717 patients from PCAWG study and 100 patients from the TRACERx study. Conclusions: Our proposed method is 10-100x times faster than existing methods, while providing results which are as accurate. Software implementing our method is freely available https://github.com/Roth-Lab/pyclone-vi.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据