4.8 Article

Reinforced-hydrogel encapsulated hMSCs towards brain injury treatment by trans-septal approach

期刊

BIOMATERIALS
卷 266, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2020.120413

关键词

Silk fibroin; Human mesenchymal stem cells; Brain-derived neurotrophic factor; Trans-septal; Brain injury

资金

  1. Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) - Ministry of Health & Welfare, Republic of Korea [HI20C0408]
  2. Hallym University research fund
  3. Bioimaging Research Team, KOREA BASIC SCIENCE INSTITUTE, Ochang, Chungcheonbuk-do, South Korea

向作者/读者索取更多资源

Encapsulated stem cells in silk fibroin-based hydrogel overproducing brain-derived neurotrophic factor showed sustained BDNF production, induced neurogenesis, and promoted neurological functional recovery in a rat model of brain injury, demonstrating a potential treatment strategy for clinical application.
Encapsulated stem cells in various biomaterials have become a potentially promising cell transplantation strategy in the treatment of various neurologic disorders. However, there is no ideal cell delivery material and method for clinical application in brain diseases. Here we show silk fibroin (SF)-based hydrogel encapsulated engineered human mesenchymal stem cells (hMSCs) to overproduce brain-derived neurotrophic factor (BDNF) (BDNF-hMSC) is an effective approach to treat brain injury through trans-septal cell transplantation in the rat model. In this study, we observed SF induced sustained BDNF production by BDNF-hMSC both in 2D (9.367 +/- 1.969 ng/ml) and 3D (7.319 +/- 0.1025 ng/ml) culture conditions for 3 days. Through immunohistochemistry using a-tubulin, BDNF-hMSCs showed a significant increased average neurite length of co-cultured neuro 2a (N2a) cells, suggested that BDNF-hMSCs induced neurogenesis in vitro. Encapsulated BDNF-hMSC, pre-labeled with the red fluorescent dye PKH-26, exhibited intense fluorescence up to 14 days trans-septal transplantation, indicated excellent viability of the transplanted cells. Compared to the vehicle-treated, encapsulated BDNF- hMSC demonstrated significantly increased BDNF level both in the sham-operated and injured hippocampus (Hip) through immunoblot analysis after 7 days implantation. Transplantation of the encapsulated BDNF-hMSC promoted neurological functional recovery via significantly reduced neuronal death in the Hip 7 days post-injury. Using magnetic resonance imaging (MRI) analysis, we demonstrated that encapsulated BDNF-hMSC reduced lesion area significantly at 14 and 21 days in the damaged brain following trans-septal implantation. This stem cell transplantation approach represents a critical set up towards brain injury treatment for clinical application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据