4.8 Article

Hyaluronan promotes the regeneration of vascular smooth muscle with potent contractile function in rapidly biodegradable vascular grafts

期刊

BIOMATERIALS
卷 257, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2020.120226

关键词

Hyaluronan (HA); Rapidly degradable polymers; Electrospinning; Tissue-engineered vascular grafts; Smooth muscle regeneration; Contractile function

资金

  1. National Natural Science Foundation of China [81925021, 81921004, 81871500]
  2. National Key R&D Program of China [2018YFE0200503]
  3. Natural Science Foundation of Tianjin [18JCJQJC46900]

向作者/读者索取更多资源

The regeneration of smooth muscle with physiological functions has been a key challenge in vascular tissue engineering. Hyaluronan (HA), as a major component of the extracellular matrix, plays a vital role in regulating tissue injury and repair. In this study, a biomimetic vascular graft was prepared by co-electrospinning of synthetic degradable polymers and native ECM components including collagen type-I as well as low and high molecular weight HA (LMW HA and HMW HA). Upon implantation in the rat abdominal aorta, the grafts exhibited sustained HA release that effectively enhanced the regeneration of vascular smooth muscle. Besides, LMW HA loaded vascular grafts demonstrated rapid endothelialization compared to the other groups. More importantly, HA-loaded poly(L-lactide-co-caprolactone) grafts demonstrated an optimal vascular media layer accompanied by well-organized elastin fibers after long-term implantation (6 months), and they maintained potent physiological function up to 1/3 that of the native artery. In contrast, inadequate smooth muscle regeneration was observed in poly(epsilon-caprolactone) grafts due to slow degradation restricting the regeneration. The mechanism was further investigated and explained by the HA-induced migration of smooth muscle cell (SMC) via CD44-mediated signaling. Besides, low molecular weight HA can promote the migration of vascular progenitor cells that further differentiate into SMCs. These results highlight the importance of HA in the regeneration of functional vascular smooth muscle, and provide a new insight into the fabrication of tissue engineering vascular grafts (TEVGs) via combining rapidly degradable polymers and bioactive ECM components that hold great translational potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据