4.7 Article

Direct ellipsometry for non-destructive characterization of interfacially-polymerized thin-film composite membranes

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 608, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.memsci.2020.118174

关键词

Ellipsometry; Thin-film composite membrane; Reverse osmosis; Membrane characterization; Interfacial polymerization

资金

  1. U.S. National Science Foundation (NSF) [CBET-1510790]
  2. Clemson Electron Microscope Laboratory
  3. KAUST [BAS/1/1323-01-01]

向作者/读者索取更多资源

In this work, we developed and validated a non-destructive and expedient ellipsometry method for the direct characterization of interfacially-polymerized (IP) selective layers in thin-film composite membranes, such as those used in reverse osmosis (RO) or nanofiltration (NF). The primary advantages of this method are direct analysis of membrane samples and avoidance of IP layer isolation. IP layer isolation has proved to be extremely useful in the past but is also laborious, requires hazardous solvents, and carries significant risks of damage or alteration of the layer morphology if not done correctly. The new ellipsometry method was used to characterize IP layer morphology, including thickness and roughness, and produced results that agree fairly well with measurements by scanning/transmission electron microscopy and atomic force microscopy. Moreover, given the non-intrusiveness of the ellipsometric measurements, dynamic in-situ studies of RO membranes exposed to fluids were demonstrated. Findings from this study are expected to catalyze the further development and application of ellipsometry as a tool for characterizing TFC membrane selective layers and observing their real-time responses to process fluids, chemical and physical stimuli (pH, temperature, etc.), and cleaning agents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据