4.7 Article

The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidization event in tea plant

期刊

HORTICULTURE RESEARCH
卷 7, 期 1, 页码 -

出版社

OXFORD UNIV PRESS INC
DOI: 10.1038/s41438-020-0288-2

关键词

-

资金

  1. Ministry of Agriculture of China through the Earmarked Fund for China Agriculture Research System [CARS-019]
  2. Chinese Academy of Agricultural Sciences through the Agricultural Science and Technology Innovation Program [CAAS-ASTIP-2017-TRICAAS]
  3. Zhejiang Provincial Natural Science Foundation of China [LQ20C160010]

向作者/读者索取更多资源

Tea is one of the most popular nonalcoholic beverages due to its characteristic secondary metabolites with numerous health benefits. Although two draft genomes of tea plant (Camellia sinensis) have been published recently, the lack of chromosome-scale assembly hampers the understanding of the fundamental genomic architecture of tea plant and potential improvement. Here, we performed a genome-wide chromosome conformation capture technique (Hi-C) to obtain a chromosome-scale assembly based on the draft genome of C. sinensis var. sinensis and successfully ordered 2984.7Mb (94.7%) scaffolds into 15 chromosomes. The scaffold N50 of the improved genome was 218.1Mb, 157-fold higher than that of the draft genome. Collinearity comparison of genome sequences and two genetic maps validated the high contiguity and accuracy of the chromosome-scale assembly. We clarified that only one Camellia recent tetraploidization event (CRT, 58.9-61.7 million years ago (Mya)) occurred after the core-eudicot common hexaploidization event (146.6-152.7 Mya). Meanwhile, 9243 genes (28.6%) occurred in tandem duplication, and most of these expanded after the CRT event. These gene duplicates increased functionally divergent genes that play important roles in tea-specific biosynthesis or stress response. Sixty-four catechin- and caffeine-related quantitative trait loci (QTLs) were anchored to chromosome assembly. Of these, two catechin-related QTL hotspots were derived from the CRT event, which illustrated that polyploidy has played a dramatic role in the diversification of tea germplasms. The availability of a chromosome-scale genome of tea plant holds great promise for the understanding of genome evolution and the discovery of novel genes contributing to agronomically beneficial traits in future breeding programs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据