4.4 Article

A New Friction Model in Hybrid Pump-Controlled Asymmetric (Single-Rod) Cylinder Drive System

期刊

TRIBOLOGY TRANSACTIONS
卷 63, 期 5, 页码 867-878

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10402004.2020.1762955

关键词

Asymmetric cylinder; friction; nonlinear analysis; LuGre model; hybrid pump-controlled system; pressure difference; acceleration

向作者/读者索取更多资源

Hybrid pump-controlled asymmetric cylinder drive systems are implemented for energy saving purposes in applications that do not require fast responses. Under low-velocity and low-pressure conditions, the friction influence in the hybrid pump-controlled system is evident. Researchers have developed various models to describe friction. These friction models are implemented based on the relative motion of the contact surfaces, and they can be categorized into static friction and dynamic friction models. For example, dynamic friction models are suitable for simulating the friction in hydraulic cylinder seals under lubrication conditions. Among the dynamic models, the LuGre model can capture almost all static and dynamic friction behaviors at the macroscopic level; for example, stiction, the Stribeck effect, and hysteresis. Thus, the LuGre model is suitable for describing the friction in hydraulic cylinders. Because the friction force in the hydraulic cylinder is mainly from the cylinder seal and seal deformation occurs under pressure due to its flexibility, the friction in a hybrid pump-controlled hydraulic system is affected by the relative motion of the contact surfaces. Therefore, to investigate factors that affect the friction other than the relative motion of the contact surfaces, the friction behaviors of a hybrid pump-controlled hydraulic system are studied. Pressure difference and acceleration terms are introduced in the LuGre friction model, and the simulated friction results of the updated LuGre model are compared with the measured experimental results to validate the new friction model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据