4.8 Article

Rod-based urchin-like hollow microspheres of Bi2S3: Facile synthesis, photo-controlled drug release for photoacoustic imaging and chemo-photothermal therapy of tumor ablation

期刊

BIOMATERIALS
卷 237, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2020.119835

关键词

Bi2S3; Sacrificed template method; Photo-controlled drug release; Chemo-photothermal therapy; Photoacoustic imaging

资金

  1. National Natural Science Foundation of China [21471043]
  2. Outstanding Scholar Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory [2018GZR110102001]
  3. Interdisciplinary Program of Shanghai Jiao Tong University [G2019QNA16]
  4. Open Project of Key Laboratory of Biomedical Engineering of Guangdong Province [KLBEMGD201903]
  5. Anhui Medical University [XJ201933, XJ201906, XJ201905, XJ201909]

向作者/读者索取更多资源

Hollow nanostructures have been evoked considerable attention owing to their intriguing hollow interior for important and potential applications in drug delivery, lithium battery, catalysis and etc. Herein, Bi2S3 hollow microspheres with rod-based urchin-like nanostructures (denoted as U-BSHM) were synthesized through a facile and rapid ion exchanging method using a particular hard template. The growth mechanism of the U-BSHM has been investigated and illustrated by the morphological evolution of the different samples at early stages. The obtained U-BSHM exhibited strong and wide UV-vis-NIR absorption ability and outstanding photothermal conversion efficiency. Thus, the U-BSHM can be used as spatio-temporal precisely controlled carrier by loading the mixture of 1-tetradecanol (phase change material, PCM) with melting point around 38 degrees C and hydrophilic chemotherapeutic doxorubicin hydrochloride (denoted as DOX) into the hollow interior to form (PCM + DOX)@Bi2S3 nanocomposites (denoted as PD@BS) for photoacoustic (PA) imaging and chemo-photothermal therapy of the tumors. When exposed to 808 nm near infrared light (NIR) laser irradiation, this nanocomposites could elevate the temperature of the surroundings by absorption and conversion of the NIR photons into heat energy, which inducing the triggered release of DOX from the hollow interior once the temperature reach up to the melting point of PCM. The killing efficiency of the chemo-photothermal therapy was systematically validated both in vitro and in vivo. In the meanwhile, the implanted tumor was completely restrained through PA imaging and combined therapies. Therefore, this kind of urchin-like hollow nanostructures would be used as important candidates for the multimodal bioimaging and therapy of tumors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据