4.7 Review

Nanoparticles favorable effects on performance of thermal storage units

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 300, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2019.112329

关键词

Heat transfer process; Solidification; PCM container; Heat transfer intensification; Solar energy

向作者/读者索取更多资源

Nowadays, the rise in the human population and consequently increasing demand for energy in different fields, have caused serious trouble for societies. Increasing energy demand necessitates the need to produce more energy, thus, the consumption of fossil fuels that are a form of non-renewable energy will be increased. Phase change materials as environments for storing heat have wide applications in storing solar energy. This energy source is clean, inexhaustible, and accessible. Its usage by humans varies based on circumstances such as geographical conditions, terrain, time variations, and cloud cover. Current article reports a comprehensive overview of TES technologies using PCM throughout discharging and charging. The purpose of current research is to scrutinize the used techniques for augmenting performance of TES for non-power plants and PCM applications. In addition, heat transfer enhancement using extended surfaces, encapsulation, different ways of augmenting the thermal features, and applying of multiple PCMs were scrutinized. Furthermore, a brief discussion on the recent articles on various fluids and nanoparticles has been presented. The results show that the paraffin was the most used PCM in the studies, and the most common unit was shell and tube heat exchanger. Results also indicate that addition of longitudinal fin is the most popular technique in TES units. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Mechanical

Air-based contactless wafer precision positioning system: Contactless sensing using charge coupled devices

Rico H. T. Hooijschuur, Niranjan Saikumar, S. Hassan HosseinNia, Ron A. J. van Ostayen

Summary: This paper presents the development and dynamic evaluation of a contactless sensing system for an air-bearing based precision wafer positioning system. The system utilizes a thin film of air to float the substrate and avoid damage and contamination. A cascaded control design is implemented to optimize the performance and handle vibration disturbances. The contactless sensor is analyzed for its performance.

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY (2023)

Article Materials Science, Multidisciplinary

Radiation and convection heat transfer optimization with MHD analysis of a hybrid nanofluid within a wavy porous enclosure

Kh. Hosseinzadeh, M. A. Erfani Moghaddam, SeyedKeivan Nateghi, Mohammad Behshad Shafii, D. D. Ganji

Summary: This study aimed to maximize thermal performance by simulating a curved porous star-shaped enclosure with a rounded cavity. The temperature difference between the inner cavity and outer surface stirred the heat flux. By investigating factors such as porosity, radiation intensity, magnetic field, and natural convection, optimal values were determined.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2023)

Article Chemistry, Physical

Cooling improvement for the machining process with the inclusion of nanoparticles using the experimental approach

M. Habibnia, M. Sheikholeslami, S. M. Tabarhoseini, Ali Taheri, M. Sheykhi

Summary: This study focuses on the evaluation of cutting fluids in the turning process. The results show that employing nanofluid minimum quantity lubrication strategy can lead to an average temperature reduction of about 60% in the cutting tool during Mo40 steel turning. Furthermore, increasing the concentration of the nanofluid can further decrease the temperature.

JOURNAL OF MOLECULAR LIQUIDS (2023)

Article Physics, Applied

Micro-polar nanofluid in the presence of thermophoresis, hall currents, and Brownian motion in a rotating system

Payam Jalili, Hossein Narimisa, Bahram Jalili, D. D. Ganji

Summary: This study investigated a rotating system of micro-polar nanofluid between two parallel plates under the influence of magnetic and electric fields. The impacts of Nusselt number, skin friction, and Sherwood number on temperature, velocity, and concentration distribution were discussed. The results demonstrated the effects of rotation, Brownian motion, thermophoresis analysis, and Hall current on the micro-polar nanofluid.

MODERN PHYSICS LETTERS B (2023)

Article Energy & Fuels

Performance Enhancement of Photovoltaic-Thermal Modules Using a New Environmentally Friendly Paraffin Wax and Red Wine-rGO/H2O Nanofluid

Hossein Nabi, Mosayeb Gholinia, Mehdi Khiadani, Abdellah Shafieian

Summary: This paper investigates the impact of red wine-rGO/H2O nanofluid and paraffin wax on the thermohydraulic properties of a photovoltaic/thermal system. Numerical simulations demonstrate that innovative serpentine tube designs significantly enhance the system's performance. The use of environmentally friendly materials such as red wine-rGO/H2O nanofluid and paraffin wax further improves the electrical and thermal efficiency of the system.

ENERGIES (2023)

Article Mathematics, Interdisciplinary Applications

A NOVEL NUMERICAL METHOD FOR SOLVING FUZZY VARIABLE-ORDER DIFFERENTIAL EQUATIONS WITH MITTAG-LEFFLER KERNELS

Hossein Jafari, Roghayeh Moallem Ganji, Davood Domiri Ganji, Zakia Hammouch, Yusif S. S. Gasimov

Summary: In this paper, the study of fuzzy differential equations (FDEs) in fuzzy calculus is discussed, which provides a proper model to address real problems with uncertainties. Specifically, a class of fuzzy differential equations (FFDEs) with non-integer or variable order (VO) is considered. The main problem is converted to a new problem by utilizing the r-cut representation and is solved using operational matrices (OMs) based on shifted Legendre polynomials (SLPs), leading to a system of nonlinear algebraic equations. The accuracy of the proposed technique is confirmed with an example.

FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY (2023)

Article Multidisciplinary Sciences

Simulation of melting paraffin with graphene nanoparticles within a solar thermal energy storage system

M. Jafaryar, M. Sheikholeslami

Summary: In this paper, the application of new structure and loading Graphene nanoparticles to enhance thermal storage systems has been studied. Aluminum layers were used in the paraffin zone, which has a melting temperature of 319.55 K. The paraffin zone was located in the middle section of a triplex tube, with uniform hot temperatures (335 K) applied to both walls of the annulus. Three container geometries were tested by changing the angle of fins (alpha = 7.5 degrees, 15 degrees, and 30 degrees). A homogeneous model with uniform concentration of additives was assumed for property prediction. The results show that loading Graphene nanoparticles decreases the melting time by about 4.98% when alpha = 7.5 degrees, and the impact of phi improves by about 5.2% when the angle is reduced from 30 degrees to 7.5 degrees. Furthermore, as the angle decreases, the melting period decreases by approximately 76.47%, which is associated with an increase in driving force (conduction) in geometries with lower alpha.

SCIENTIFIC REPORTS (2023)

Article Construction & Building Technology

Investigation of innovative cooling system for photovoltaic solar unit in existence of thermoelectric layer utilizing hybrid nanomaterial and Y-shaped fins

Z. Khalili, M. Sheikholeslami

Summary: The lack of an enhanced cooling system for Photovoltaic (PV) cells is addressed by offering a new system configuration utilizing numerical approach. A new layer for thermoelectric has been added to increase electrical output. The cooling system contains cooling ducts and confined jets, with hybrid nanofluid as the working fluid. The numerical method simulation confirms the effectiveness of the proposed system.

SUSTAINABLE CITIES AND SOCIETY (2023)

Article Energy & Fuels

Efficacy of porous foam on discharging of phase change material with inclusion of hybrid nanomaterial

M. Sheikholeslami

Summary: The influence of porous media on the solidification of water with hybrid nanoparticles has been simulated in this study. A tree-shaped fin and the impact of radiation were utilized to expedite the process. The hybrid nanomaterial consisted of a mixture of Al2O3 and CuO with a volume fraction of 0.01 for each powder type, making the homogeneous mixture approximation logical. A wiremesh packed approach was used to model the porous foam, and the impact of porosity on the freezing process was analyzed. The temperature equation, including two source terms for radiation and phase changing, was considered, and the Galerkin method was implemented for solving the equations.

JOURNAL OF ENERGY STORAGE (2023)

Article Thermodynamics

The magnetohydrodynamic flow of viscous fluid and heat transfer examination between permeable disks by AGM and FEM

Bahram Jalili, Hassan Roshani, Payam Jalili, Mohammad Jalili, Pooya Pasha, Davood Domiri Ganji

Summary: This paper investigates the behavior of a 2D steady, laminar, and incompressible viscous fluid between two porous disks under an external magnetic field. The study is divided into two interconnected parts. In the first part, the dimensionless equations of the nanofluid flow between the disks are analyzed using the Akbari-Ganji Method (AGM) and compared with numerical results. The second part focuses on using the Finite Element Method (FEM) in CFD software to study the fluid parameters of two different types of nanotubes.

CASE STUDIES IN THERMAL ENGINEERING (2023)

Article Mathematics, Interdisciplinary Applications

Fractional-Order Negative Position Feedback for Vibration Attenuation

Marcin B. Kaczmarek, Hassan HosseinNia

Summary: In this paper, a fractional-order extension of a negative position feedback (NPF) controller for active damping is proposed. The controller design is motivated by frequency-domain loop shaping analysis and maintains the high-pass characteristics of an integer-order NPF. Experimental results demonstrate the efficiency and feasibility of the proposed fractional-order controller.

FRACTAL AND FRACTIONAL (2023)

Article Thermodynamics

Performance improvement of photovoltaic/thermal systems by using twisted tapes in the coolant tubes with different cross-section patterns

Mehran Ghasemian, M. Sheikholeslami, Maziar Dehghan

Summary: This study applies numerical techniques to assess the integration of twisted tapes in different cross-sectional tubes of Photovoltaic/Thermal (PV/T) collector units, and the impact on system performance. Computational fluid dynamics is used to evaluate PV/T systems with cylindrical, rectangular, and triangular cross-sectional tubes, with and without twisted tapes. Various pitch-to-width ratios (YD) of twisted tapes and total inlet mass flow rates are considered. The analysis of energy and exergy is carried out to evaluate system performance. The results show that the triangular cross-sectional tube is optimal without twisted tapes, but the cylindrical tube with twisted tapes outperforms other designs in terms of electrical and thermal aspects. The addition of a twisted tape in the cylindrical tube increases electrical efficiency by 7.2% and 9%, respectively. Furthermore, integrating twisted tapes with the lowest pitch-to-width ratio reduces surface temperature by 3.2℃ and 17.55℃ compared to systems with cylindrical tubes and PV alone.

ENERGY (2023)

Article Energy & Fuels

Simulation for charging of phase change material in existence of nanomaterial within solar energy storage system

M. Jafaryar, M. Sheikholeslami

Summary: Regarding the thermal management of the storage unit, one possible solution is to use an extended surface made of highly conductive metallic materials. This study suggests four different arrangements of the system by changing the number and thickness of plates, and solid matrix made of Silicon Carbide, Aluminum, and Stainless Steel. Additionally, loading alumina nanoparticles improves the heat absorption of the phase change material. Increasing the number of radial plates and reducing their thickness enhances heating penetration. The best case in terms of melting speed is achieved when using 40 plates with a thickness of 0.5 mm made of SiC material, resulting in a 87.84% reduction in melting time compared to the worst case.

JOURNAL OF ENERGY STORAGE (2023)

Article Construction & Building Technology

Investigation of solar photovoltaic-thermoelectric system for building unit in presence of helical tapes and jet impingement of hybrid nanomaterial

M. Sheikholeslami, Z. Khalili

Summary: A new configuration of photovoltaic-thermal unit with a thermoelectric layer has been proposed to enhance electrical performance. The system includes a circular duct with a turbulator and a mini channel with jet impingement for hybrid nanofluid flow. By selecting the turbulator with the highest revolution, the electrical efficiency improves by about 1.41% and useful heat increases by about 5.72%. The best case equipped with confined jets achieves an electrical performance of 15.50% and a thermal performance of 85.30%, with a temperature uniformity improvement of about 46.89%.

JOURNAL OF BUILDING ENGINEERING (2023)

Article Construction & Building Technology

Analyzing efficiency of solar heat storage unit within a building including trombe wall equipped with phase change material in existence of fins

M. Sheikholeslami, Hazim R. A. Al-Hussein

Summary: This study combines Trombe wall with paraffin layer and fins for solar energy saving and ventilation purposes. Alumina nanoparticles are loaded into pure paraffin to enhance the performance. Two heat generation terms are added to consider solar irradiation, and temperature equations with heat sources are applied for modeling different layers. The impacts of fins' thickness, length, and paraffin layer's position are investigated. The system with Y-shaped fins shows higher liquid fraction and lower heat loss, leading to a 28.41% increase in heat capacity at 17:00 with the best configuration.

JOURNAL OF BUILDING ENGINEERING (2023)

Article Chemistry, Physical

Dimer-parity dependent odd-even effects in photoinduced transitions to cholesteric and twist grain boundary SmC* mesophases: PBG characteristics

Rajalaxmi Sahoo, C. Reshma, D. S. Shankar Rao, C. V. Yelamaggad, S. Krishna Prasad

Summary: This study investigates the influence of the flexible spacer parity of a guest photoactive liquid crystalline dimer on the photonic bandgap features of the cholesteric and twist grain boundary smectic C phases of the host molecule. The results show that the parity of the photoactive dimer affects the width of the photonic bandgap and the blue-shift of the cholesteric phase. Additionally, the parity of the dimer also affects the layer spacing and two-dimensional periodicity of the liquid crystalline phases.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Understanding the CO2 capture potential of tetrapropylammonium-based multifunctional deep eutectic solvent via molecular simulation

Sara Rozas, Alberto Gutierrez, Mert Atilhan, Alfredo Bol, Santiago Aparicio

Summary: This study presents a multiscale theoretical investigation on the use of bifunctional hydrophobic Deep Eutectic Solvent for carbon capture using tetrapropylammonium chloride, acetic acid, and ethanolamine. The characterization includes nanoscale analysis of CO2 absorption mechanisms and changes in liquid phase properties during gas capture.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Theoretical study of the Cu2+-glycine interaction in ammonia and effects

Tabouli Eric Da-yang, Alhadji Malloum, Jean Jules Fifen, Mama Nsangou, Jeanet Conradie

Summary: In this study, the potential energy of different glycine tautomers and their interaction with Cu2+ cations was investigated. The results showed that the solvation medium and the presence of Cu2+ cations influenced the stability of glycine tautomers.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Morphology study of light- and pH-responsive amphiphiles with DSA for detection of nitrobenzene derivatives

Xiaoliang Gou, Nan Ye, Qingqing Han, Junjie Cui, Long Yi Jin

Summary: In this study, amphiphilic rod-coil molecules with rigid DSA parts and flexible oligoether chains were designed and their assembly capacities were investigated. The morphology of the molecular aggregates was influenced by the pH of the solution and UV light, and the aggregates showed adsorption capacity for nitroaromatic compounds.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Effect of SBS structure on viscosity of SBS-modified asphalt based on molecular dynamics: Insights from shearing phase morphology, adsorption and swelling mechanisms

Shuang Liu, Liyan Shan, Cong Qi, Wenhui Zhang, Guannan Li, Bei Wang, Wei Wei

Summary: Optimizing the design of styrene-butadiene-styrene copolymer (SBS) is crucial for producing cost-effective SBS modifiers and improving road quality. This study examined the influence of SBS content and molecular structure on viscosity and compatibility. The results showed that the viscosity contribution of SBS is determined by its molecular structure and phase morphology.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Vaporization enthalpy of azeotropes by the solution calorimetry method

Artem A. Petrov, Ekaterina A. Titova, Aydar A. Akhmadiyarov, Ilnaz T. Rakipov, Boris N. Solomonov

Summary: This work focuses on the thermochemistry of solvation of azeotropes. The enthalpies of dissolution of azeotropes in different mediums were determined, and the impact of the structure of the azeotropes on their properties in solution was discussed. A correlation between enthalpies of solvation and molar refraction was used to determine the vaporization enthalpies of azeotropes for the first time. The results were found to be consistent with literature data, obtained using direct and calculated methods. These findings contribute to the analysis of the structure-property relationships of azeotropes.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Deep machine learning, molecular dynamics and experimental studies of liquid Al-Cu-Co alloys

L. V. Kamaeva, E. N. Tsiok, N. M. Chtchelkatchev

Summary: Understanding the correlations between liquids and solids allows us to predict the thermodynamic parameter range favorable for the formation of intriguing solid phases by studying liquids. In this study, we experimentally and theoretically investigated an Al-Cu-Co system within different composition ranges, and identified high-temperature solid phases. Our findings demonstrated the correlation between the boundaries of different solid phases and undercooling and viscosity in the concentration area.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Surface adsorption of adenine on pristine and B/N/O/P-doped coronene as a biosensing substrate for DNA detection- DFT study

R. Aneesh Kumar, S. Jamelah Al-Otaibi, Y. Sheena Mary, Y. Shyma Mary, Nivedita Acharjee, Renjith Thomas, Renjith Raveendran Pillai, T. L. Leena

Summary: In this study, the interactions between doped and pristine coronenes and adenine nucleobases were investigated using Density Functional Theory. The optimal configurations, adsorption energies, charge transfer, and electrical properties of each complex were calculated. It was found that doped coronene had stronger adsorption strength and charge transfer compared to pristine coronene. The stability of the complexes was attributed to non-covalent interactions in the interactive region. The change in electrical conductivity of coronenes after adsorption suggested their sensitivity towards DNA bases. The predicted energy gap and prolonged recovery time for adenine-coronene configurations indicated the potential application of pristine/doped coronene in DNA detection.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Study on the fine particles deposition law in the bronchus of miners affected by dust pollution in the anchor excavation working environment

Gang Zhou, Yongwei Liu, Biao Sun, Zengxin Liu, Cuicui Xu, Rulin Liu, Qi Zhang, Yongmei Wang

Summary: The CFD-DEM method was used to simulate the dust deposition pattern in the bronchus of anchor digging drivers, revealing the highest dust concentration in the vortex region of the working face. The study also found a positive correlation between dust particle diameter and bronchial deposition rate, and a negative correlation with alveolar deposition rate.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Unveiling regularities of B12N12-X nanocages as a drug delivery vehicle for the nitrosourea: The influence of periods and groups

Yan Zhang, Yafei Luo, Lingkai Tang, Mingyan E, Jianping Hu

Summary: This study investigates the effects of different transition metal decorations on B12N12 nanocages on the adsorption properties of nitrosourea drugs using computational methods. The results reveal the presence of weak non-covalent interactions between metals and nanocages, and the interaction between drugs and nanocages plays a significant role in drug adsorption. Compared to free drugs, the adsorption of drugs on nanocages can facilitate electron transfer, reduce energy gaps and chemical hardness, indicating activity at the target site.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Aromatic aldehyde oxidation by hexacyanoferrate(III) catalyzed by Ru(VI) in alkaline medium

C. I. Alcolado, J. Poblete, L. Garcia-Rio, E. Jimenez, F. J. Poblete

Summary: In this study, the selective oxidation of aromatic aldehydes was investigated using Ru(VI) as a catalyst and hexacyanoferrate (III) as a cooxidant in an alkaline medium. The reaction mechanism involves complex reaction orders for the oxidant and the aromatic aldehyde, while the reaction order for Ru(VI) is one. The proposed mechanism includes two catalytic cycles and the formation and decomposition of complexes. Quantitative structure-activity relationship analysis showed that deactivating groups in the para-position enhance the process.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Effective removal of hypnotic drug from the aqueous medium through adsorption on graphene oxide magnetic derivatives

Inez A. Barbieri, Marcos L. S. Oliveira, Franciele S. Bruckmann, Theodoro R. Salles, Leonardo Zancanaro, Luis F. O. Silva, Guilherme L. Dotto, Eder C. Lima, Mu. Naushad, Cristiano R. Bohn Rhoden

Summary: This study evaluated the adsorption of zolpidem on magnetic graphene oxide and synthesized magnetic graphene oxide adsorbents for zolpidem removal. The best magnetic nanoadsorbent was found to have a removal percentage of 87.07% at specific pH and temperature conditions. The results suggest that the removal of zolpidem is related to the surface chemistry of the adsorbent rather than the surface area of graphene oxide. The adsorbent showed excellent adsorption efficiency and magnetic behavior, making it a promising material for removing zolpidem from aqueous solutions.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

A sensitivity analysis on thermal conductivity of Al2O3-H2O nanofluid: A case based on molecular dynamics and support vector regression method

Hongyan Huang, Chunquan Li, Siyuan Huang, Yuling Shang

Summary: This study examines the sensitivity of the thermal conductivity of water-based alumina nanofluids to changes in concentration, sphericity, and temperature. The results show that volume fraction and temperature have a significant impact on the thermal conductivity, while sphericity also needs to be considered. A support vector machine regression model was created to analyze the sensitivity of the thermal conductivity to different parameters. The findings indicate that temperature, sphericity, and volume fraction are the most sensitive variables.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Correction Chemistry, Physical

Canonical partition function and distance dependent correlation functions of a quasi-one-dimensional system of hard disks (vol 387,122572, 2023)

V. M. Pergamenshchik, T. Bryk, A. Trokhymchuk

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Modifying optical nonlinearities of ionic liquid crystal glass by adding gold and carbon nanoparticles

Valentyn Rudenko, Anatolii Tolochko, Svitlana Bugaychuk, Dmytro Zhulai, Gertruda Klimusheva, Galina Yaremchuk, Tatyana Mirnaya, Yuriy Garbovskiy

Summary: This paper reports on the synthesis, structural characterization, spectral and nonlinear-optical properties of glass nanocomposites made of glass forming ionic liquid crystals and nanoparticles. The study reveals that by exciting the nanocomposites within their absorption band, a control over effective optical nonlinearities can be achieved, allowing the modification of the magnitude and sign of the effective nonlinear absorption coefficient. The proposed strategy using metal-alkanoates based glass-forming ionic liquid crystals and nanoparticles shows great potential for the development of nanophotonics and plasmonics technologies.

JOURNAL OF MOLECULAR LIQUIDS (2024)