4.6 Article

Graph regularized L2,1-nonnegative matrix factorization for miRNA-disease association prediction

期刊

BMC BIOINFORMATICS
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12859-020-3409-x

关键词

miRNA; Disease; miRNA-disease associations; NMF L-2; 1-norm

资金

  1. National Natural Science Foundation of China [U19A2064, 61873001, 61872220, 61672037, 61861146002, 61732012]

向作者/读者索取更多资源

Background The aberrant expression of microRNAs is closely connected to the occurrence and development of a great deal of human diseases. To study human diseases, numerous effective computational models that are valuable and meaningful have been presented by researchers. Results Here, we present a computational framework based on graph Laplacian regularized L-2,L- 1-nonnegative matrix factorization (GRL(2, 1)-NMF) for inferring possible human disease-connected miRNAs. First, manually validated disease-connected microRNAs were integrated, and microRNA functional similarity information along with two kinds of disease semantic similarities were calculated. Next, we measured Gaussian interaction profile (GIP) kernel similarities for both diseases and microRNAs. Then, we adopted a preprocessing step, namely, weighted K nearest known neighbours (WKNKN), to decrease the sparsity of the miRNA-disease association matrix network. Finally, the GRL(2,1)-NMF framework was used to predict links between microRNAs and diseases. Conclusions The new method (GRL(2, 1)-NMF) achieved AUC values of 0.9280 and 0.9276 in global leave-one-out cross validation (global LOOCV) and five-fold cross validation (5-CV), respectively, showing that GRL(2, 1)-NMF can powerfully discover potential disease-related miRNAs, even if there is no known associated disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据