4.6 Article

Influence of fine scale features on room temperature superplastic behaviour of an ultrafine-grained Al-30Zn alloy

期刊

MATERIALS LETTERS
卷 254, 期 -, 页码 329-331

出版社

ELSEVIER
DOI: 10.1016/j.matlet.2019.07.097

关键词

Al-Zn alloy; Grain boundaries; Superplasticity; Ultrafine-grained microstructure; Phase transformation

资金

  1. Ministry of Science and Higher Education of the Russian Federation [14.586.21.0061, RFMEFI58618X0061]

向作者/读者索取更多资源

Two different ultrafine-grained states have been achieved in an Al-30Zn (wt%) alloy by high-pressure torsion (HPT) in different conditions. The material processed at room temperature exhibits a two phases mixture with Zn particles that have nucleated inside Al grains but also at triple lines and Zn segregation at grain boundaries. Under tensile stress at room temperature, this ultrafine grain structure gives rise to a superplastic behaviour with a total elongation exceeding 200%. Interestingly, further deformation by HPT at 50 degrees C leads to significantly finer intragranular Zn precipitates which affects the mechanical behavior reducing the elongation to failure down to only 70%. This transition in superplastic behaviour is attributed these fine scale Zn particles that should lead to a greater accumulation of dislocations and earlier failure. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Multidisciplinary

Effect of ECAP processing on microstructure and mechanical behaviour of Ti-6Al-4V manufactured by directed energy deposition

Sylwia Rzepa, Zuzanka Trojanova, Jan Dzugan, Ruslan Z. Valiev, Martina Koukolikova, Daniel Melzer, Michal Brazda

Summary: Additive manufacturing (AM) allows faster and cheaper production of complex-shaped parts. Equal channel angular pressing (ECAP) induces strain and dislocations, leading to material strengthening. This study investigates the combination of directed energy deposition (DED) and ECAP processing on titanium alloy Ti-6Al-4V. The ECAP-processed specimens show significant improvement in mechanical properties.

MATERIALS CHARACTERIZATION (2023)

Article Materials Science, Multidisciplinary

Atomic-scale inhomogeneous solute distribution in an ultrahigh strength nanocrystalline Al-8 Mg aluminum alloy

Yulin Chen, Manping Liu, Lipeng Ding, Zhihong Jia, Shuangfeng Jia, Jianbo Wang, Maxim Murashkin, Ruslan Z. Valiev, Hans J. Roven

Summary: In this study, non-uniform Mg solute distribution (i.e., Mg-enriched/depletion zones) around grain boundaries (GBs) in a nanocrystalline Al-8 Mg alloy was observed through experimental observation. The abnormal segregation hindered GB migration and dislocation motion, thus enhancing the strength of the material. A proposed inhomogeneous solute distribution mechanism may contribute to the development of new strengthening mechanisms for nanocrystalline materials.

MATERIALS CHARACTERIZATION (2023)

Article Chemistry, Physical

Low-Temperature Superplasticity and High Strength in the Al 2024 Alloy with Ultrafine Grains

Elena V. Bobruk, Maxim Yu. Murashkin, Ilnar A. Ramazanov, Vil U. Kazykhanov, Ruslan Z. Valiev

Summary: This study aims to achieve superplasticity of ultrafine-grained (UFG) Al 2024 alloy at temperatures lower than traditional commercial Al alloys. Complex tensile tests were conducted at various temperatures and strain rates, and the UFG alloy exhibited superplastic behavior at 240 and 270 degrees C. The UFG alloy also demonstrated higher strength compared to the standard strengthening heat treatment T6.

MATERIALS (2023)

Article Materials Science, Multidisciplinary

Novel effects of grain size and ion implantation on grain boundary segregation in ion irradiated austenitic steel

Andrew K. Hoffman, Yongfeng Zhang, Maalavan Arivu, Li He, Kumar Sridharan, Yaqiao Wu, Rinat K. Islamgaliev, Ruslan Z. Valiev, Haiming Wen

Summary: In nuclear reactor environments, nanocrystalline 304 stainless steel exhibits unique radiation-induced segregation behavior with the enrichment of Cr at grain boundaries. Lattice-based atomic kinetic Monte Carlo simulations reveal the influences of grain size, injected interstitials, and self-ion injection on grain boundary segregation.

ACTA MATERIALIA (2023)

Article Materials Science, Multidisciplinary

Mechanism of room-temperature superplasticity in ultrafine-grained Al-Zn alloys

Zizheng Song, Ranming Niu, Xiangyuan Cui, Elena V. Bobruk, Maxim Yu. Murashkin, Nariman A. Enikeev, Ji Gu, Min Song, Vijay Bhatia, Simon P. Ringer, Ruslan Z. Valiev, Xiaozhou Liao

Summary: Superplastic deformation of polycrystalline materials is usually achieved by diffusion-assisted grain boundary sliding at high temperatures. Recent research has shown that room-temperature superplasticity can be achieved in ultrafine-grained Al-Zn based alloys, but the underlying mechanism is still unclear. This study utilized in-situ tensile straining, electron microscopy characterization, and atomistic density functional theory simulation to reveal that the superplasticity at room temperature is achieved by grain boundary sliding and grain rotation, facilitated by the continuous diffusion of Zn. The diffusion of Zn atoms from grains to grain boundaries forms a Zn nanolayer, acting as a solid lubricant to lower the energy barrier of grain boundary sliding.

ACTA MATERIALIA (2023)

Article Mechanics

Determination of Fatigue Failure Parameters from the Depth of Plastic Zones Beneath the Fracture Surface

G. V. Klevtsov, L. R. Botvina, N. A. Klevtsova, R. Z. Valiev, I. N. Pigaleva

Summary: Fatigue failure is the most common type of failure in various engineering systems, and its study is crucial for predicting system's service life. The investigation of fatigue failure in new ultrafine-grained nanostructured metal materials is particularly interesting. This study demonstrates the possibility of determining the maximum cycle stress and cycle asymmetry coefficient from the depth of plastic zones beneath the surface of fatigue fractures.

PHYSICAL MESOMECHANICS (2023)

Article Materials Science, Multidisciplinary

Fracture Kinetics and Mechanisms of Ultrafine-Grained Materials during Fatigue Tests in the Low-Cycle Fatigue Region

Gennadiy V. Klevtsov, Ruslan Z. Valiev, Natal'ya A. Klevtsova, Maksim N. Tyurkov, Irina N. Pigaleva, Denis A. Aksenov

Summary: This paper analyzes the fracture kinetics and mechanisms of different ultrafine-grained materials with different crystal lattices in the low-cycle fatigue region. The tests conducted show that the formation of ultrafine-grained structure has an unclear effect on the total number of cycles to failure of the samples. The fatigue crack initiation cycles account for about 20% of the total life of the samples, regardless of the material state and crystal lattice type. The fatigue crack propagation rates of the majority of investigated ultrafine-grained materials are close to or lower than that of the initial coarse-grained materials.

METALS (2023)

Article Crystallography

Breaks in the Hall-Petch Relationship after Severe Plastic Deformation of Magnesium, Aluminum, Copper, and Iron

Shivam Dangwal, Kaveh Edalati, Ruslan Z. Z. Valiev, Terence G. G. Langdon

Summary: Strengthening and softening mechanisms in ultrafine-grained materials have been debated for many years. This study examines the Hall-Petch relationship in ultrafine-grained magnesium, aluminum, copper, and iron. The results show that while the materials follow the Hall-Petch relationship initially, an up-break occurs for grain sizes below 500-1000 nm. This is due to enhanced dislocation contribution. However, a down-break occurs for grain sizes smaller than 70-150 nm due to diminished dislocation contribution and increased thermally-activated phenomena. The study also finds that strategies other than grain refinement, such as microstructural stabilization by segregation or precipitation, are necessary to achieve extra strengthening.

CRYSTALS (2023)

Article Materials Science, Multidisciplinary

Microstructural Transformation and Enhanced Strength of Wire-Feed Electron-Beam Additive Manufactured Ti-6Al-4V Alloy Induced by High-Pressure Torsion

Roman R. Valiev, Alexey V. Panin, Emil I. Usmanov, Yana N. Savina, Ruslan Z. Valiev

Summary: This study demonstrates for the first time the influence of high-pressure torsion (HPT) on microstructural refinement and mechanical strength of Ti-6Al-4V titanium alloy produced by wire-feed electron-beam additive manufacturing. HPT processing results in an ultrafine-grained (UFG) structure and significantly increases the microhardness of the alloy. Microscopic studies reveal that the UFG structure consists predominantly of alpha and beta phases.

ADVANCED ENGINEERING MATERIALS (2023)

Article Chemistry, Physical

Effect of the Equal Channel Angular Pressing on the Microstructure and Phase Composition of a 7xxx Series Al-Zn-Mg-Zr Alloy

Anwar Qasim Ahmed, Daniel Olasz, Elena V. Bobruk, Ruslan Z. Valiev, Nguyen Q. Chinh

Summary: A supersaturated Al-Zn-Mg-Zr alloy with ultrafine-grained structure was obtained through the ECAP technique, resulting in significantly improved hardness and changes in subsequent thermal processes.

MATERIALS (2023)

Article Materials Science, Multidisciplinary

A Molecular Dynamics Simulation to Shed Light on the Mechanical Alloying of an Al-Zr Alloy Induced by Severe Plastic Deformation

Alina Y. Morkina, Rita I. Babicheva, Elena A. Korznikova, Nariman A. Enikeev, Kaveh Edalati, Sergey V. Dmitriev

Summary: Molecular dynamics simulations were used to study the mechanical dissolution of Zr in Al. The orientation of the grain boundary was found to affect the mixing efficiency of alloy components, with a normal orientation promoting better dissolution of Zr.

METALS (2023)

Article Materials Science, Multidisciplinary

Effect of Deformation-Induced Plasticity in Low-Alloyed Al-Mg-Zr Alloy Processed by High-Pressure Torsion

Tatiana S. Orlova, Aydar M. Mavlyutov, Dinislam I. Sadykov, Nariman A. Enikeev, Maxim Yu. Murashkin, John D. Clayton

Summary: The influence of additional deformation heat treatments on a ultrafine-grained Al-Mg-Zr alloy was studied. It was found that the treatments greatly enhanced plasticity while maintaining high electrical conductivity and strength. The increase in density of grain boundary dislocations was the main factor contributing to the improved properties.

METALS (2023)

Article Materials Science, Biomaterials

In Vivo Studies of Medical Implants for Maxillofacial Surgery Produced from Nanostructured Titanium

Alexander A. Matchin, Evgeniy V. Nosov, Alexander A. Stadnikov, Gennadiy V. Klevtsov, Luiza R. Rezyapova, Natalia A. Sayapina, Elena V. Blinova, Ruslan Z. Valiev

Summary: This study focuses on the osseointegration behavior of medical implants made from nanostructured grade 4 titanium in maxillofacial surgery. The results show that nanotitanium implants have a significantly faster fixation rate due to osseointegration compared to standard factory-made implants, indicating better osseointegration for nanotitanium implants.

ACS BIOMATERIALS SCIENCE & ENGINEERING (2023)

Article Materials Science, Multidisciplinary

Al-Mg-Mn-Zn-Zr alloy with refined grain structure to develop Al-B fiber-reinforced metal matrix composites compacted in superplastic conditions

Elena Bobruk, Vladimir V. Astanin, Ilnar A. Ramazanov, Nail G. Zaripov, Vil U. Kazykhanov, Nariman A. Enikeev

Summary: Homogeneous nanostructured and ultrafine-grained states were achieved in an Al-Mg-Mn-Zn-Zr alloy through high pressure torsion and continuous equal channel angular pressing. The refined grain structure in both states exhibited low temperature and high strain rate superplastic behavior. The nanostructured alloy was used for MMC fabrication under superplastic conditions, resulting in defect-free compaction of an Al-B fiber-reinforced composite.

MATERIALS TODAY COMMUNICATIONS (2023)

Review Engineering, Multidisciplinary

Development of Bioactive Scaffolds for Orthopedic Applications by Designing Additively Manufactured Titanium Porous Structures: A Critical Review

Mikhail V. Kiselevskiy, Natalia Yu. Anisimova, Alexei V. Kapustin, Alexander A. Ryzhkin, Daria N. Kuznetsova, Veronika V. Polyakova, Nariman A. Enikeev

Summary: This paper provides an overview of recent research findings in model-driven development of additively manufactured porous materials for the development of bioactive implants in orthopedic applications. By adjusting pore geometry, it is possible to control the mechanical properties and drug loading capacity of the engineered structures to be compatible with bone tissues. The paper also critically analyzes the recent advances in the field and highlights the actual problems and their potential solutions.

BIOMIMETICS (2023)

Article Materials Science, Multidisciplinary

F-doped Co3O4 with Pt-like activity and excellent stability for hydrogen evolution reaction in alkaline media

Deyong Zheng, Huihui Jin, Yucong Liao, Pengxia Ji

Summary: In this study, a highly stable and efficient catalyst, fluorine-doped Co3O4 (F-Co3O4), was developed for hydrogen production by water electrolysis. The F-Co3O4 catalyst exhibited a remarkable reduction in overpotential and demonstrated excellent stability for over 100 hours.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Effect of the addition of Cu6Sn5 nanoparticles on the growth of intermetallic compounds at the interfaces of Sn3.0Ag0.5Cu solder joints

Ziwen Lv, Jintao Wang, Fengyi Wang, Jianqiang Wang, Fuquan Li, Hongtao Chen

Summary: Adding Cu6Sn5 nano particles can effectively inhibit the overgrowth of intermetallic compounds at the interfaces of solder joints in electronic devices, providing a solution to this issue. A new growth mechanism of intermetallic compounds at the interfaces was identified.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

BiOI/AgI/Ag plasmonic heterostructure for efficient photoelectrochemical water splitting

Jun Wang, Jiawei Chen, Wanru Liao, Fangyang Liu, Min Liu, Liangxing Jiang

Summary: A BiOI/AgI/Ag plasmonic heterostructure photocathode was successfully designed through electrodeposition, ion-exchange, and illumination methods. This photocathode exhibits superior performance in photoelectrochemical water splitting.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Ni@O-doped carbon Mott-Schottky heterojunctions to enhance sulfur conversion kinetics

Xiaoxiao Liu, Xianxian Zhou, Xiaotao Ma, Qinbo Yuan, Shibin Liu

Summary: In this study, the authors propose a method to accelerate the reaction of polysulfides in lithium-sulfur batteries using a Ni@OC Mott-Schottky heterojunction as a catalyst. The experimental results demonstrate that the charge redistribution at the Ni@OC interface accelerates electron transfer and enhances catalytic activity, leading to improved reaction kinetics and battery performance.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Effect of fixture boundary conditions for low-velocity impact: A focus on composites with different matrix and fibers

Dayou Ma, Mohammad Rezasefat, Joziel Aparecido da Cruz, Sandro Campos Amico, Marco Giglio, Andrea Manes

Summary: The matrix has a significant effect on the impact resistance of composite materials. Replacing a brittle polymer with a more flexible one can improve impact resistance, but it poses challenges to standard testing methods. This study designs a new fixture for testing the low-velocity impact of soft composites and investigates the effect of the fixture on the mechanical performance.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Synergistic effect of defects and heterostructures endowing bronze titanium dioxide with superior lithium storage performances

Lingchang Wang, Qihang Yang, Huzhen Li, Ming Wei, Qian Wang, Zhenzhong Hu, Mengmeng Zhen

Summary: Bronze titanium dioxide (TiO2(B)) is a promising anode material for lithium-ion batteries due to its high specific capacity. However, its practical applications are hindered by poor conductivity and limited electrochemical kinetics. In this study, TiO2(B)-carbon nanosheets heterostructures are synthesized to enhance the cycling performance and rate capability of TiO2(B).

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Sustained electromagnetic parameters of barium ferrite and epoxy nanocomposites for patch antenna miniaturization over GHz frequency range

Atul Thakur, Ritesh Verma, Ankush Chauhan, Fayu Wan, Preeti Thakur

Summary: In this study, BaFe12O19 and BaFe12O19: Epoxy (50:50) nanocomposites were synthesized using the co-precipitation method. The structural information and material properties, such as crystallite size and electrical conductivity, were characterized by XRD, FESEM, EDX, and TEM techniques.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

In-situ construction of CoS2@NC hierarchical binder-free cathode for advanced Li-CO2 batteries

Jingyu Wu, Xinyan Ma, Yong Yang

Summary: A well-defined CoS2@NC(CS-500) hierarchical binder-free catalyst cathode is constructed through in-situ grown of ZIF-67 on carbon cloth and high-temperature carbonization. The cathode shows excellent reaction kinetics and electrochemical performance, providing inspiration for developing advanced Li-CO2 battery catalysts.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

K5Eu1-xHox(MoO4)4: Structures and luminescence properties

Svetlana M. Posokhova, Vladimir A. Morozov, Kirill N. Boldyrev, Dina Deyneko, Erzhena T. Pavlova, Bogdan I. Lazoryak

Summary: This study explores the impact of synthesis method and composition on the structure and luminescence properties of K5Eu1-xHox(MoO4)4 with the palmierite-type matrix. The co-doping of Eu3+ and Ho3+ ions plays a critical role in manipulating charge transfer and luminescence efficiency in the visible and infrared regions.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Benzonitrile/pyridylbenzoimidazole hybrid electron-transport material for efficient phosphorescence and TADF OLEDs

Jian Wang, Yeting Tao, Jingsheng Wang, Youtian Tao

Summary: A new electron-transport material iTPyBI-CN is developed through non-catalytic C-N coupling reaction. It exhibits better electroluminescence efficiency in organic light-emitting diodes compared to the commercial material TPBI, due to its twisted geometry and higher energy levels.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Microscopic characteristics and thermodynamic property changes in limestone under high-temperature treatment

Tao Zhu, Feng Huang, Shuo Li, Yang Zhou

Summary: This article combines XRD analysis and microscopic structural observation to investigate the changes in limestone after high-temperature treatment. It finds that 500 degrees C is the critical temperature for crystalline and spatial arrangement changes in limestone, and the thermal conductivity, specific heat capacity, and heat storage coefficient gradually decrease after thermal treatment.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Novel synthesis of ZnO nanostructure from galvanization waste for antibacterial application

Muhammad Haekal Habibie, Fransiska Sri Herwahyu Krismastuti, Abdi Wira Septama, Faiza Maryani, Vivi Fauzia

Summary: This study focuses on the synthesis of zinc oxide nanostructure from zinc recovered from galvanization ash and highlights its potential as a sustainable source of zinc and as an antibacterial agent.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Biomimetic mineralization engineered phycocyanin with improved stability and antioxidantive activity under environmental stress

Jingyi Li, Yixin Xing, Wei Gu, Shousi Lu

Summary: In this study, PC@CaP microparticles were fabricated using biomimetic mineralization. The results showed that under environmental stress, PC@CaP exhibited improved stability and antioxidative activity, indicating its potential use in high-added value fields.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

ZIF-8 nanoparticles combined with fibroin protein co-modified TiO2 nanotube arrays to construct a drug sustained-release platform

Yan Liu, Shunyou Chen

Summary: In this study, TNTs were used as a drug carrier and modified with ZIF-8 and silk fibroin to obtain a new drug loading platform. The results showed that this drug-loaded platform had a good drug release effect in vitro and could promote cell proliferation and osteogenic differentiation.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Observation of stacking faults in ε-phase InSe crystal

Chunhui Zhu, Wentao Wang, Qing Zhen, Xinning Huang, Shixin Li, Shaochang Wang, Xiaoping Ma, Xiaoxia Liu, Yalong Jiao, Kai Sun, Zhuangzhi Li, Huaixin Yang, Jianqi Li

Summary: A type of stacking fault is revealed in e-InSe crystal, which is associated with a small stacking-fault energy and shows exceptional plasticity.

MATERIALS LETTERS (2024)