4.7 Article

The wound healing effects of the Tilapia collagen peptide mixture TY001 in streptozotocin diabetic mice

期刊

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE
卷 100, 期 7, 页码 2848-2858

出版社

WILEY
DOI: 10.1002/jsfa.10104

关键词

collagen peptides mixture TY001; growth factors; inflammatory cytokines; streptozotocin diabetic mice; tissue antioxidants; wound healing

资金

  1. National Key Research and Development Program of China [2016YFD0400602]

向作者/读者索取更多资源

BACKGROUND The Tilapia collagen peptides mixture TY001 is effective in promoting wound healing in acetic acid-induced skin lesions in zebrafish and in protecting against lipopolysaccharide-induced inflammation and disruption of glucose metabolism in mice. The present study aimed to further examine the wound healing effects of TY001 in streptozotocin-induced diabetic mice. METHODS Full-thickness skin excision wounds were created with 8-mm biopsy punches and TY001 was administered via drinking water (15, 30 and 45 g L-1 in emulsion) for 15 days. RESULTS Wound healing was delayed in diabetic mice but was promoted by TY001 after 5, 10 or 15 days of treatment. Collagen deposition and tissue hydroxyproline contents were increased by TY001. The expressions of insulin growth factor-1, basic fibroblast growth factor, platelet-derived growth factor, transforming growth facts beta 1, vascular endothelial growth factor and epidermal growth factor were increased by TY001, as indicated by immunobiochemistry and a quantitative polymerase chain reaction. Diabetes-associated serum pro-inflammatory cytokines interleukin (IL)-1 beta and IL-8 were decreased, whereas anti-inflammatory IL-10 and nitric oxide were increased by TY001, along with increased tissue antioxidant superoxide dismutase and catalase activities. Diabetes-reduced serum protein levels were also recovered by TY001 CONCLUSION Taken together, Tilapia collagen peptide mixture TY001 was effective with respect to enhancing diabetes-associated wound healing delay, probably via increasing growth factors and collagen deposition in the wound, attenuating diabetes-induced prolonged inflammation, increasing tissue antioxidants and providing nutritional support in diabetic mice. (c) 2019 Society of Chemical Industry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据