4.6 Article

Application of AlMgGaLi foil for joining copper to SiCp/Al-MMCs for high-temperature and high-power electronics

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00339-019-2884-2

关键词

-

资金

  1. National Natural Science Foundation of China [51275390]
  2. China Scholarship Council

向作者/读者索取更多资源

A novel lead-free foil (AlMgGaLi) with a melting point of 398.3 similar to 414.8 degrees C was developed for active soldering of copper to aluminum matrix composite. The effect of joining pressure on the microstructure, interface wetting and shear strength of the dissimilar joints was analyzed. When the joining pressure increased to 1 MPa, an Al-based solid solution with an atomic composition of 89.62% Al, 6.5% Mg, 3.1% O, 0.46% Cu, 0.23% Ga and 0.09% Si was formed within the bond seam and the thickness of the transition layer with copper dissolution was approximately 4.9 mu m. The joining pressure improved the interfacial wettability of the dissimilar joint by enhancing mutual diffusion with a shortened interface layer, tailored the runout and the formation of bond seam, and controlled an appropriate thickness of the copper dissolution transition layer. Sound joint with a maximum shear strength of 94 MPa (similar to 80% of parent composites) is achievable at 450 degrees C using the joining pressure of 1 MPa. The failure mechanism of the joints with the AlMgGaLi foil under shear stress has been revealed from the analysis on the interface layers of the joints with SEM/EDX/XRD. Our studies provide an important guideline for using an AlMgGaLi and other similar fillers for a successfully joining of copper to Al-MMCs for high-temperature and high-power electronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据