4.7 Article

Neutrophil Proteases Promote Experimental Abdominal Aortic Aneurysm via Extracellular Trap Release and Plasmacytoid Dendritic Cell Activation

期刊

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/ATVBAHA.116.307786

关键词

aortic aneurysm; abdominal; dendritic cells; extracellular traps; interferon type I; neutrophil extracellular traps; plasmacytoid dendritic cells

资金

  1. VA Merit Review Award [1I01 BX002714]
  2. National Institutes of Health (NIH) [AR067491, AI051436, HL073646]
  3. Department of Medicine at Washington University in St. Louis
  4. Hybridoma Center of the Rheumatic Diseases Core Center [NIH P30AR048335]

向作者/读者索取更多资源

Objective We previously established that neutrophil-derived dipeptidyl peptidase I (DPPI) is essential for experimental abdominal aortic aneurysm (AAA) development. Because DPPI activates several neutrophil serine proteases, it remains to be determined whether the AAA-promoting effect of DPPI is mediated by neutrophil serine proteases. Approach and Results Using an elastase-induced AAA model, we demonstrate that the absence of 2 neutrophil serine proteases, neutrophil elastase and proteinase-3, recapitulates the AAA-resistant phenotype of DPPI-deficient mice. DPPI and neutrophil serine proteases direct the in vitro and in vivo release of extracellular structures termed neutrophil extracellular traps (NETs). Administration of DNase1, which dismantles NETs, suppresses elastase-induced AAA in wild-type animals and in DPPI-deficient mice reconstituted with wild-type neutrophils. NETs also contain the cathelicidin-related antimicrobial peptide that complexes with self-DNA in recruiting plasmacytoid dendritic cells (pDCs), inducing type I interferons (IFNs) and promoting AAA in DPPI-deficient mice. Conversely, depletion of pDCs or blockade of type I IFNs suppresses experimental AAA. Moreover, we find an abundance of human cathelicidin peptide, a 37 amino acid sequence starting with 2 leucines and the human orthologue of cathelicidin-related antimicrobial peptide, in the vicinity of pDCs in human AAA tissues. Increased type I IFN mRNA expression is observed in human AAA tissues and circulating IFN- is detected in approximate to 50% of the AAA sera examined. Conclusions These results suggest that neutrophil protease-mediated NET release contributes to elastase-induced AAA through pDC activation and type I IFN production. These findings increase our understanding of the pathways underlying AAA inflammatory responses and suggest that limiting NET, pDC, and type I IFN activities may suppress aneurysm progression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据