4.8 Article

The human gut chemical landscape predicts microbe-mediated biotransformation of foods and drugs

期刊

ELIFE
卷 8, 期 -, 页码 -

出版社

ELIFE SCIENCES PUBLICATIONS LTD
DOI: 10.7554/eLife.42866

关键词

-

类别

资金

  1. National Institutes of Health Training Program in Cellular and Molecular Biology and Genetics [5T32GM007491-41]
  2. National Institutes of Health [1R01CA222358]
  3. United States Department of Defense [CA171019]

向作者/读者索取更多资源

Microbes are nature's chemists, capable of producing and metabolizing a diverse array of compounds. In the human gut, microbial biochemistry can be beneficial, for example vitamin production and complex carbohydrate breakdown; or detrimental, such as the reactivation of an inactive drug metabolite leading to patient toxicity. Identifying clinically relevant microbiome metabolism requires linking microbial biochemistry and ecology with patient outcomes. Here we present MicrobeFDT, a resource which clusters chemically similar drug and food compounds and links these compounds to microbial enzymes and known toxicities. We demonstrate that compound structural similarity can serve as a proxy for toxicity, enzyme sharing, and coarse-grained functional similarity. MicrobeFDT allows users to flexibly interrogate microbial metabolism, compounds of interest, and toxicity profiles to generate novel hypotheses of microbe-diet-drug-phenotype interactions that influence patient outcomes. We validate one such hypothesis experimentally, using MicrobeFDT to reveal unrecognized gut microbiome metabolism of the ovarian cancer drug altretamine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据