4.6 Article

Model of influenza virus acidification

期刊

PLOS ONE
卷 14, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0214448

关键词

-

资金

  1. St. Luke's School

向作者/读者索取更多资源

Internal acidification of the influenza virus, mediated by the M2 proton channel, is a key step in its life cycle. The interior M1 protein shell dissolves at pH similar to 5.5 to 6.0, allowing the release of vRNA to the cytoplasm upon fusion of the viral envelope with the endosomal membrane. Previous models have described the mechanisms and rate constants of M2-mediated transport but did not describe the kinetics of pH changes inside the virus or consider exterior pH changes due to endosome maturation. Therefore, we developed a mathematical model of M2-mediated virion acidification. We find that similar to 32,000 protons are required to acidify a typically-sized virion. Predicted acidification kinetics were consistent with published in vitro experiments following internal acidification. Finally, we applied the model to the in vivo situation. For all rates of endosomal maturation considered, internal acidification lagged similar to 1 min behind endosomal acidification to pH 6. For slow endosomal maturation requiring several minutes or more, internal and endosomal pH decay together in pseudo-equilibrium to the late endosomal pH similar to 5.0. For fast endosomal maturation (less than or similar to 2 min), a lag of tens of seconds continued toward the late endosomal pH. Recent experiments suggest in vivo maturation is in this fast regime where lag is considerable. We predict that internal pH reaches the threshold for M1 shell solvation just before the external pH triggers membrane fusion mediated by the influenza protein hemagglutinin, critical because outward proton diffusion through a single small fusion pore is faster than the collective M2-mediated transport inward.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据