4.5 Article

Effect of Boron Addition on Creep Strain during Impression Creep of P91 Steel

期刊

出版社

SPRINGER
DOI: 10.1007/s11665-019-04167-z

关键词

EBSD; effect of boron; impression creep; P91 steel; P91B steel; WDS

资金

  1. Board of Research in Nuclear Sciences [GAP-0260]

向作者/读者索取更多资源

In an attempt to understand the effect of boron addition on creep deformation behavior under high stress and high temperature in martensitic P91 steel, impression creep tests were carried out on boron-free P91 (P91) and boron-added P91 (P91B) steels. The experimental program consisted of three steps, i.e., characterization of as-received steels by microhardness, optical microscopy (OM), transmission electron microscopy (TEM), electron backscattered diffraction (EBSD) and wavelength-dispersive spectroscopy (WDS); impression creep tests at 445 MPa and 625 degrees C on as-received steels; characterization at deformed plastic zones of impression-crept specimens by microhardness, OM, EBSD, TEM and WDS. Impression creep tests were run till a depth of penetration of 1.8 mm was achieved for both cases which ensured a sufficient plastic zone underneath indenter for subsequent microstructural investigations. Coarsening of M23C6 carbides was observed in P91 steel during high-temperature creep loading, which leads to extensive strain hardening in deformed plastic region, resulting in impaired creep performance. On the contrary, dynamic recrystallization in P91B steel results in formation of small strain-free grains during creep loading which are responsible for increased resistance of the material to shear stresses during an impression creep test.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据