4.7 Article

Distal-end force prediction of tendon-sheath mechanisms for flexible endoscopic surgical robots using deep learning

期刊

MECHANISM AND MACHINE THEORY
卷 134, 期 -, 页码 323-337

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.mechmachtheory.2018.12.035

关键词

Haptic feedback; Surgical robot; Tendon sheath mechanisms; Deep learning; Hysteresis

资金

  1. National Research Foundation (NRF) Singapore [NRFI2016-07]

向作者/读者索取更多资源

Accurate haptic feedback is highly challenging for flexible endoscopic surgical robots due to space limitation for sensors on small end-effectors and critical force hysteresis of their tendon-sheath mechanisms (TSMs). This paper proposes a deep learning approach to predicting the distal force of TSMs when manipulating a biological tissue based on only proximal-end measurements. Both Multilayer Perceptron (MLP) and Recurrent Neural Network (RNN) were investigated to study their capabilities of making sequential distal force predictions. The results were compared with those of the conventional modelling approach. It was observed that, when sufficient data was provided for training, RNN achieved the most accurate prediction (RMSE = 0.0219 N) in experiments with constant system velocity. The effects of insufficient training data, varying system velocity and irregular motion trajectories on the performance of RNN were further studied. Notably, RNN could precisely identify the current system phase in the force hysteresis profile and can be applied to TSMs with realistic non-periodic movement such as manual manipulation trajectory (RSME = 0.2287 N). The proposed approach can be applied to any TSM-driven robotic systems for accurate haptic feedback without requiring sensors at the distal ends of the robots. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据