4.6 Article

CVD growth of monolayer WS2 through controlled seed formation and vapor density

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mssp.2018.12.035

关键词

WS2; Monolayer; CVD; TMDCs; Seed

资金

  1. Anadolu University [BAP 1705F265]
  2. Scientific and Technological Research Council of Turkey (TUBITAK) [116F445]
  3. Turkish Academy of Sciences (TUBA-GEBIP)

向作者/读者索取更多资源

Large area, single layer WS2 has a high potential for use in optoelectrical devices with its high photo-luminescence intensity and low response time. In this work, we demonstrate a systematic study of controlled tungsten disulfide (WS2) monolayer growth using chemical vapor deposition (CVD) technique. With a detailed investigation of process parameters such as H-2 gas inclusion into the main carrier gas, growth temperature and duration, we have gained insight into two-dimensional (2D) WS2 synthesis through controlling the seed formations and the radical vapor density associated with WO3. We confirm that H-2 gas, when included to the carrier gas, is directly involved in WO3 reduction due to its reductive reagent nature, which provides a more effective sulfurization and monolayer formation process. Additionally, by changing the CVD growth configuration, hence, increasing the tungsten related vapor density and confining the reactant radicals, we succeed in realizing larger WS(2 )monolayers, which is still a technological challenge in order to utilize these structures for practical applications. Further optimization of the growth procedure is demonstrated by tuning the growth duration to prevent the excess seed formations and additional layers which will possibly limit the device performance of the monolayer flakes or films when applied.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据