4.6 Article

A freestanding polypyrrole hybrid electrode supported by conducting silk fabric coated with PEDOT: PSS and MWCNTs for high-performance supercapacitor

期刊

ELECTROCHIMICA ACTA
卷 317, 期 -, 页码 42-51

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.05.124

关键词

Silk fabric; Freestanding; Drop-coating method; Good cycling stability; Symmetric supercapacitor

资金

  1. National Natural Science Foundation of China [51203018]

向作者/读者索取更多资源

In this paper, a hierarchical hybrid silk fabric-based (SF) electrode is fabricated via a simple two-step process, including Poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT: PSS) and multi-walled carbon nanotube (MWCNT) drop-coating and polypyrrole (PPy) in-suit electrodeposition for symmetric supercapacitors, which shows a low sheet resistance (1.57 +/- 0.11 Omega sq(-1)), outstanding capacitance of 5296 mF cm(-2) at 2mA cm(-2) and excellen cycling performance. The splendid electro-chemical performance can be attributed to the combination of the assorted composites, PEDOT: PSS and PPy provide superior conductivity and large faradaic pseudocapacitance, the doping of MWCNT significantly improves the cycling performance of the composite electrodes, and the unique hierarchical structures of SF provide a large accessible area for the active composites loading. Moreover, the symmetric supercapacitor shows a highly capacitance of 1088.6 mF cm(-2) (13.44 F cm(-3)) at 2 mAcm(-2), and energy density of 1.87 mWh cm(-3) at a power density of 12 mW cm(-3) with good cycling stability. In addition, the device features easy fabrication, low-cost and long-term cycling life, which indicates it can be a promising energy storage device in the future. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

High-performance all-solid-state supercapacitor derived from PPy coated carbonized silk fabric

Xin Li, Chao Sun, Zaisheng Cai, Fengyan Ge

APPLIED SURFACE SCIENCE (2019)

Article Electrochemistry

A Novel Method to Fabricate Nitrogen and Oxygen Co-Doped Flexible Cotton-Based Electrode for Wearable Supercapacitors

Chao Sun, Jing Zhao, Zhiguang Guo, Yaping Zhao, Zaisheng Cai, Fengyan Ge

CHEMELECTROCHEM (2019)

Article Engineering, Electrical & Electronic

Flexible self-standing carbon fabric electrode prepared by using simple route for wearable applications

Zhiguang Guo, Jing Zhao, Chao Sun, Zaisheng Cai, Fengyan Ge

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS (2020)

Article Engineering, Electrical & Electronic

The fabrication of hierarchically porous carbon-coated nickel oxide nanomaterials with enhanced electrochemical properties

Chao Sun, Hongzhe Sun, Zhiguang Guo, Fengyan Ge

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS (2020)

Article Chemistry, Physical

Heteroatoms-doped porous carbon electrodes with three-dimensional self-supporting structure derived from cotton fabric for high-performance wearable supercapacitors

Chao Sun, Zhiguang Guo, Man Zhou, Xiaoyan Li, Zaisheng Cai, Fengyan Ge

Summary: By converting cotton fabrics into high-performance carbon electrodes doped with heteroatoms and utilizing carbonization processes, this study achieved exceptional electrochemical properties for wearable supercapacitors. The resulting electrodes exhibited high specific capacitance, excellent rate property, and good coulombic efficiency, showcasing potential for mass production and future use in wearable electronic devices.

JOURNAL OF POWER SOURCES (2021)

Article Chemistry, Multidisciplinary

Low-Voltage Electrical Heater Based on One-Step Fabrication of Conductive Cu Nanowire Networks for Application in Wearable Devices

Zhiguang Guo, Chao Sun, Jing Zhao, Zaisheng Cai, Fengyan Ge

Summary: This study introduces a flexible, low driving voltage, heat-resistant, and rapid-response Cu nanowire networks/clean nylon woven fabric wearable electrical heater, with highly conductive and uniform features that can quickly heat up in a short time. In addition, through methods such as finite element analysis, it lays the foundation for improving the performance and energy saving of personal thermal management textiles based on Joule heating.

ADVANCED MATERIALS INTERFACES (2021)

Article Nanoscience & Nanotechnology

High-Performance Laminated Fabric with Enhanced Photothermal Conversion and Joule Heating Effect for Personal Thermal Management

Zhiguang Guo, Chao Sun, Juan Wang, Zaisheng Cai, Fengyan Ge

Summary: Inspired by the thermal management of polar bears, a multifunctional wearable heater with enhanced photothermal conversion, mid-infrared reflection, thermal insulation, and electrical heating performance was developed. It can quickly reach high temperatures and provide good insulation, showing potential for energy-saving personal thermal management fabrics.

ACS APPLIED MATERIALS & INTERFACES (2021)

Article Chemistry, Physical

Enhancement of SERS performance using hydrophobic or superhydrophobic cotton fabrics

Chao Sun, Shuo Zhang, Juan Wang, Fengyan Ge

Summary: In this work, hydrophobic and super-hydrophobic Surface-enhanced Raman spectroscopy (SERS) substrates were prepared to enhance the SERS performance. The optimized hydrophobic substrate achieved an enhancement factor of 1.57 x 10(6) and a detection sensitivity of 10(-10) M. The optimized super-hydrophobic substrate had an enhancement factor of 1.93 x 10(6), a detection limit of 10(-11) M, and remained effective after 6 months of storage.

SURFACES AND INTERFACES (2022)

Article Electrochemistry

Recent advances in Bio-mass by electrochemically strategies generated hydrogen gas production: Environmentally sustainable technologies innovation

Abdul Qayoom Mugheri, Shaista Khan, Ali Asghar Sangah, Aijaz Ahmed Bhutto, Muhammad Younis Laghari, Nadeem Ahmed Mugheri, Asif Ali Jamali, Arsalan Ahmed Mugheri, Nagji Sodho, Abdul Waheed Mastoi, Aftab Kandhro

Summary: Green hydrogen has the potential to transition to a pollution-free energy infrastructure. This study proposes a solution to produce hydrogen during the photoelectrochemical process, offering greater stability and control over chemical reactions. Techno-economic assessments show the efficiency and economic feasibility of co-producing value-added chemicals to enhance green hydrogen production.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

ACGNet: An interpretable attention crystal graph neural network for accurate oxidation potential prediction

Danpeng Cheng, Wuxin Sha, Qigao Han, Shun Tang, Jun Zhong, Jinqiao Du, Jie Tian, Yuan-Cheng Cao

Summary: LiNixCoyMn1-x-yO2 (NCM) is a critical cathode material for lithium-ion batteries in electric vehicles. The aging of cathode/electrolyte interfaces leads to capacity degradation and long-term cycle instability. A novel neural network model called ACGNet is developed to predict electrochemical stability windows of crystals, allowing for high-throughput screening of coating materials. LiPO3 is identified as a promising coating material with high oxidation voltage and low cost, which significantly improves the cycle stability of NCM batteries. This study demonstrates the accuracy and potential of machine learning in battery materials.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Enhanced electrochemical performance of CuO/NiO/rGO for oxygen evolution reaction

P. Mohana, R. Yuvakkumar, G. Ravi, S. Arunmetha

Summary: This study successfully fabricates a non-noble CuO/NiO/rGO nanocomposite and investigates its electrocatalytic performance for oxygen evolution reaction in alkaline environment. The experimental results demonstrate that the electrocatalyst exhibits high activity and good stability, offering a new synthetic approach for sustainable energy production.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Carbon nanofibers implanted porous catalytic metal oxide design as efficient bifunctional electrode host material for lithium-sulfur battery

Qiong Qu, Jing Guo, Hongyu Wang, Kai Zhang, Jingde Li

Summary: In this study, a bifunctional electrode host design consisting of carbon nanofibers implanted ordered porous Co-decorated Al2O3 supported on carbon nanotube film (CNTF) was proposed to address the shuttling effect of lithium polysulfides (LiPSs) and dendrite formation of metal lithium anode in lithium-sulfur (Li-S) batteries. The electrode exhibited excellent conductivity, efficient confinement of LiPSs, and catalytic conversion performance, resulting in high initial capacity and good capacity retention during cycling. As an anode, the electrode showed excellent Li+ diffusion performance and uniform lithium growth behavior, achieving a dendrite-free lithium electrode. The flexible pack cell assembled from these electrodes delivered a specific capacity of 972 mAh g(-1) with good capacity retention.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Spray coating of carbon nanoparticles as an effective and scalable method to enhance the performance of stainless steel anode in microbial electrochemical systems

Hong Zhang, Jin-Peng Yu, Chen Chen, Cheng-Yong Shu, Guang-Yu Xu, Jie Ren, Kai Cui, Wen-Fang Cai, Yun-Hai Wang, Kun Guo

Summary: Spray coating of acetylene black nanoparticles onto stainless steel mesh can enhance its biofilm formation ability and current density, making it a promising electrode material for microbial electrochemical systems. The spray coating method is simple, cost-effective, and suitable for large-size stainless steel electrodes.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Electrochemical properties of Li-rich ternary cathode material Li1.20Mn0.44Ni0.32Co0.04O2 and its oxygen-deficient phase

Binpeng Hou, Jingjin Chen, Li-Hong Zhang, Xiaowen Shi, Zizhong Zhu

Summary: The electrochemical performance of Li1.20Mn0.44Ni0.32Co0.04O2 and its oxygen-deficient phase Li1.20Mn0.44Ni0.32Co0.04O1.83 was studied through first-principles calculations. The results show that the oxygen-deficient phase has a higher theoretical capacity but lower voltage platform and higher chemical activity compared to the pristine phase.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Post-mortem analysis of the Li-ion battery with charge/discharge deterioration in high- and low-temperature environments

Yating Du, Sayoko Shironita, Daisuke Asakura, Eiji Hosono, Yoshitsugu Sone, Yugo Miseki, Eiichi Kobayashi, Minoru Umeda

Summary: This study investigates the effect of high- and low-temperature environments on the charge-discharge performance of a Li-ion battery. The deterioration mechanisms of the battery at different temperatures are analyzed through various characterization techniques. The results indicate that the battery performance deteriorates more significantly at a low-temperature environment of 5 degrees C compared to higher temperatures. The understanding of the deterioration mechanisms can contribute to the development of safer battery usage methods.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

A Co3O4-x/Co nanocomposite with synergistically enhanced electrochemical activity for reduction of nitrite to ammonia

Si-Si Shi, Zhi-Xiang Yuan, Fei Zhang, Ping Chen

Summary: In this study, a new nano-electrocatalyst was prepared, which exhibited superior electrocatalytic activity for the reduction of NO2- to ammonia in a neutral electrolyte, potentially due to the synergistic enhancement between Co3O4-x and Co.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Facile fabrication of NaOH nanorods on pencil graphite electrode for simultaneous electrochemical detection of natural antioxidants by deep eutectic solvent

Berna Dalkiran, Havva Bekirog

Summary: This study reports the use of deep eutectic solvents (DES) based on ethylene glycol and urea as low-cost and green electrolytes for enhancing electrochemical detection of natural antioxidants. The study successfully developed a disposable and effective electrochemical sensing platform for simultaneous determination of ascorbic acid (AA) and gallic acid (GA) using NaOH nanorods on a pencil graphite electrode. The proposed electrode showed improved analytical performance, with higher peak currents and shifted oxidation potentials in DES compared to BR buffer medium.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

A three-dimensional fibrous tungsten-oxide/carbon composite derived from natural cellulose substance as an anodic material for lithium-ion batteries

Sijun Ren, Jianguo Huang

Summary: In this study, a novel bio-inspired nanofibrous WO3/carbon composite was synthesized using a facile hydrothermal method. The three-dimensional network structure of the composite alleviated the volume expansion of WO3 nanorods and enhanced the charge-transport kinetics. The optimized composite exhibited superior lithium storage properties.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Stabilizing the dissolution kinetics by interstitial Zn cations in CoMoO4 for oxygen evolution reaction at high potential

Zhilong Zheng, Yu Chen, Hongxia Yin, Hengbo Xiao, Xiangji Zhou, Zhiwen Li, Ximin Li, Jin Chen, Songliu Yuan, Junjie Guo, Haibin Yu, Zhen Zhang, Lihua Qian

Summary: This study found that interstitial Zn cations in CoMoO4 can modulate the dissolution kinetics of Mo cations and improve the OER performance. The interstitial Zn cations can prevent the dissolution of Co cations at high potential, enhancing the durability of the catalyst.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Molecular insights on optimizing nanoporous carbon-based supercapacitors with various electrolytes

Xiaobo Lin, Shern R. Tee, Debra J. Searles, Peter T. Cummings

Summary: Molecular dynamics simulations using the constant potential method were used to investigate the charging dynamics and charge storage of supercapacitors. The simulations revealed that the water-in-salt electrolyte exhibited the highest charge storage and significantly higher capacitance on the negative electrode. The varying contributions of different electrode regions to supercapacitor performance were also demonstrated.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Interaction between bilirubin oxidase and Au nanoparticles distributed over dimpled titanium foil towards oxygen reduction reaction

Wiktoria Lipinska, Vita Saska, Katarzyna Siuzdak, Jakub Karczewski, Karol Zaleski, Emerson Coy, Anne de Poulpiquet, Ievgen Mazurenko, Elisabeth Lojou

Summary: The spatial distribution of enzymes on electrodes is important for bioelectrocatalysis. In this study, controlled spatial distribution of gold nanoparticles on Ti nanodimples was achieved. The efficiency of enzymatic O2 reduction was found to be influenced by the size of the gold nanoparticles and their colocalization with TiO2. The highest stability of enzymatic current was observed with the largest gold nanoparticles.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Electrochemical supercapacitor and water splitting electrocatalysis applications of self-grown amorphous Ni(OH)2 nanosponge-balls

Tariq M. Al-Hejri, Zeenat A. Shaikh, Ahmed H. Al-Naggar, Siddheshwar D. Raut, Tabassum Siddiqui, Hamdan M. Danamah, Vijaykumar V. Jadhav, Abdullah M. Al-Enizi, Rajaram S. Mane

Summary: This study explores a promising self-growth approach for the synthesis of nickel hydroxide (Ni(OH)2) nanosponge-balls on the surface of a nickel-foam (NiF) electrode. The modified NiF electrode, named Ni(OH)2@NiF, shows distinctive nanosponge-ball morphology and demonstrates excellent energy storage capability and electrocatalytic performance in both hydrogen and oxygen evolution reactions.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Versatile mixed ionic-electronic conducting binders for high-power, high-energy batteries

Rafael Del Olmo, Gregorio Guzman-Gonzalez, Oihane Sanz, Maria Forsyth, Nerea Casado

Summary: The use of Lithium-Ion Batteries (LIBs) is becoming increasingly extensive, and it is important to optimize the devices to achieve their maximum practical specific capacity. In this study, mixed ionic-electronic conducting (MIEC) binders based on PEDOT:PSS and PEDOT: PDADMA-TFSI were developed for Li-ion cathodes, and their performance was compared with conventional formulations. The influence of electrode formulations, including the addition of conducting carbon and an Organic Ionic Plastic Cristal (OIPC), was also analyzed. The proposed binders showed improved performance compared to conventional formulations with different electrolyte types and active materials.

ELECTROCHIMICA ACTA (2024)