4.7 Article

Establishment and application of CRISPR interference to affect sporulation, hydrogen peroxide detoxification, and mannitol catabolism in the methylotrophic thermophile Bacillus methanolicus

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 103, 期 14, 页码 5879-5889

出版社

SPRINGER
DOI: 10.1007/s00253-019-09907-8

关键词

Bacillus methanolicus; Thermophile; Methylotroph; CRISPR interference; dCas9; Sporulation; spo0A; Mannitol metabolism; mtlD; katA

资金

  1. ERA CoBioTech project C1Pro [722361]

向作者/读者索取更多资源

Bacillus methanolicus is a thermophilic, Gram-positive, rod-shaped bacterium. It is a facultative methylotroph which can use carbon and energy sources including mannitol and the one-carbon (C1) and non-food substrate methanol for growth and overproduction of amino acids, which makes it a promising candidate for biotechnological applications. Despite a growing tool box for gene cloning and expression, tools for targeted chromosomal gene knockouts and gene repression are still missing for this organism. Here, the CRISPRi-dCas9 technique for gene repression was established in B. methanolicus MGA3. Significantly reduced spore formation on the one hand and increased biofilm formation on the other hand could be demonstrated when the stage zero sporulation protein A gene spo0A was targeted. Furthermore, when the mannitol-1-phosphate 5-dehydrogenase gene mtlD was targeted by CRISPRi, mtlD RNA levels, and MtlD specific activities in crude extracts were decreased to about 50% which resulted in reduced biomass formation from mannitol. As a third target, the catalase gene katA was chosen. Upon targeting katA by CRISPRi, catalase activity was decreased to about 25% as shown in H2O2 drop assays and by determination of specific catalase activity in crude extracts. Our results support the predicted functions of Spo0A in sporulation and biofilm formation, of MtlD for mannitol catabolism, and of catalase in hydrogen peroxide dismutation. Thus, CRISPR interference as developed here serves as basis for the functional characterization of B. methanolicus physiology as well as for its application in biotechnology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据