4.5 Article Proceedings Paper

Using multiple neutron time of flight detectors to determine the hot spot velocity

期刊

REVIEW OF SCIENTIFIC INSTRUMENTS
卷 89, 期 10, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5039372

关键词

-

资金

  1. U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]

向作者/读者索取更多资源

An important diagnostic value of a shot at the National Ignition Facility is the resultant center-of-mass motion of the imploding capsule. This residual velocity reduces the efficiency of converting laser energy into plasma temperature. A new analysis method extracts the effective hot spot motion by using information from multiple neutron time-of-flight (nToF) lines-of-sight (LoSs). This technique fits a near Gaussian spectrum to the nToF scope traces and overcomes reliance on models to relate the plasma temperature to the mean energy of the emitted neutrons. This method requires having at least four nToF LoSs. The results of this analysis will be compared to an approach where each LoS is analyzed separately and a model is used to infer the mean energy of the emitted neutrons. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Multidisciplinary Sciences

Burning plasma achieved in inertial fusion

A. B. Zylstra, O. A. Hurricane, D. A. Callahan, A. L. Kritcher, J. E. Ralph, H. F. Robey, J. S. Ross, C. V. Young, K. L. Baker, D. T. Casey, T. Doppner, L. Divol, M. Hohenberger, S. Le Pape, A. Pak, P. K. Patel, R. Tommasini, S. J. Ali, P. A. Amendt, L. J. Atherton, B. Bachmann, D. Bailey, L. R. Benedetti, L. Berzak Hopkins, R. Betti, S. D. Bhandarkar, J. Biener, R. M. Bionta, N. W. Birge, E. J. Bond, D. K. Bradley, T. Braun, T. M. Briggs, M. W. Bruhn, P. M. Celliers, B. Chang, T. Chapman, H. Chen, C. Choate, A. R. Christopherson, D. S. Clark, J. W. Crippen, E. L. Dewald, T. R. Dittrich, M. J. Edwards, W. A. Farmer, J. E. Field, D. Fittinghoff, J. Frenje, J. Gaffney, M. Gatu Johnson, S. H. Glenzer, G. P. Grim, S. Haan, K. D. Hahn, G. N. Hall, B. A. Hammel, J. Harte, E. Hartouni, J. E. Heebner, V. J. Hernandez, H. Herrmann, M. C. Herrmann, D. E. Hinkel, D. D. Ho, J. P. Holder, W. W. Hsing, H. Huang, K. D. Humbird, N. Izumi, L. C. Jarrott, J. Jeet, O. Jones, G. D. Kerbel, S. M. Kerr, S. F. Khan, J. Kilkenny, Y. Kim, H. Geppert Kleinrath, V. Geppert Kleinrath, C. Kong, J. M. Koning, J. J. Kroll, M. K. G. Kruse, B. Kustowski, O. L. Landen, S. Langer, D. Larson, N. C. Lemos, J. D. Lindl, T. Ma, M. J. MacDonald, B. J. MacGowan, A. J. Mackinnon, S. A. MacLaren, A. G. MacPhee, M. M. Marinak, D. A. Mariscal, E. V. Marley, L. Masse, K. Meaney, N. B. Meezan, P. A. Michel, M. Millot, J. L. Milovich, J. D. Moody, A. S. Moore, J. W. Morton, T. Murphy, K. Newman, J. -M. G. Di Nicola, A. Nikroo, R. Nora, M. V. Patel, L. J. Pelz, J. L. Peterson, Y. Ping, B. B. Pollock, M. Ratledge, N. G. Rice, H. Rinderknecht, M. Rosen, M. S. Rubery, J. D. Salmonson, J. Sater, S. Schiaffino, D. J. Schlossberg, M. B. Schneider, C. R. Schroeder, H. A. Scott, S. M. Sepke, K. Sequoia, M. W. Sherlock, S. Shin, V. A. Smalyuk, B. K. Spears, P. T. Springer, M. Stadermann, S. Stoupin, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, E. R. Tubman, P. L. Volegov, C. R. Weber, K. Widmann, C. Wild, C. H. Wilde, B. M. Van Wonterghem, D. T. Woods, B. N. Woodworth, M. Yamaguchi, S. T. Yang, G. B. Zimmerman

Summary: A burning-plasma state has been achieved in the laboratory using a laser facility to generate X-rays and compress and heat a fuel-containing capsule. Experiments show fusion self-heating exceeding the mechanical work input, and a subset of experiments appear to have crossed the static self-heating boundary, providing an opportunity to study α-particle-dominated plasmas and burning-plasma physics.

NATURE (2022)

Article Physics, Multidisciplinary

Design of inertial fusion implosions reaching the burning plasma regime

A. L. Kritcher, C. Young, H. F. Robey, C. R. Weber, A. B. Zylstra, O. A. Hurricane, D. A. Callahan, J. E. Ralph, J. S. Ross, K. L. Baker, D. T. Casey, D. S. Clark, T. Doppner, L. Divol, M. Hohenberger, L. Berzak Hopkins, S. Le Pape, N. B. Meezan, A. Pak, P. K. Patel, R. Tommasini, S. J. Ali, P. A. Amendt, L. J. Atherton, B. Bachmann, D. Bailey, L. R. Benedetti, R. Betti, S. D. Bhandarkar, J. Biener, R. M. Bionta, N. W. Birge, E. J. Bond, D. K. Bradley, T. Braun, T. M. Briggs, M. W. Bruhn, P. M. Celliers, B. Chang, T. Chapman, H. Chen, C. Choate, A. R. Christopherson, J. W. Crippen, E. L. Dewald, T. R. Dittrich, M. J. Edwards, W. A. Farmer, J. E. Field, D. Fittinghoff, J. A. Frenje, J. A. Gaffney, M. Gatu Johnson, S. H. Glenzer, G. P. Grim, S. Haan, K. D. Hahn, G. N. Hall, B. A. Hammel, J. Harte, E. Hartouni, J. E. Heebner, V. J. Hernandez, H. Herrmann, M. C. Herrmann, D. E. Hinkel, D. D. Ho, J. P. Holder, W. W. Hsing, H. Huang, K. D. Humbird, N. Izumi, L. C. Jarrott, J. Jeet, O. Jones, G. D. Kerbel, S. M. Kerr, S. F. Khan, J. Kilkenny, Y. Kim, H. Geppert-Kleinrath, V Geppert-Kleinrath, C. Kong, J. M. Koning, M. K. G. Kruse, J. J. Kroll, B. Kustowski, O. L. Landen, S. Langer, D. Larson, N. C. Lemos, J. D. Lindl, T. Ma, M. J. MacDonald, B. J. MacGowan, A. J. Mackinnon, S. A. MacLaren, A. G. MacPhee, M. M. Marinak, D. A. Mariscal, E. Marley, L. Masse, K. Meaney, P. A. Michel, M. Millot, J. L. Milovich, J. D. Moody, A. S. Moore, J. W. Morton, T. Murphy, K. Newman, J-M G. Di Nicola, A. Nikroo, R. Nora, M. Patel, L. J. Pelz, J. L. Peterson, Y. Ping, B. B. Pollock, M. Ratledge, N. G. Rice, H. Rinderknecht, M. Rosen, M. S. Rubery, J. D. Salmonson, J. Sater, S. Schiaffino, D. J. Schlossberg, M. B. Schneider, C. R. Schroeder, H. A. Scott, S. M. Sepke, K. Sequoia, M. W. Sherlock, S. Shin, V. A. Smalyuk, B. K. Spears, P. T. Springer, M. Stadermann, S. Stoupin, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, C. Trosseille, E. R. Tubman, P. L. Volegov, K. Widmann, C. Wild, C. H. Wilde, B. M. Van Wonterghem, D. T. Woods, B. N. Woodworth, M. Yamaguchi, S. T. Yang, G. B. Zimmerman

Summary: Burning plasma state has been achieved at the US National Ignition Facility using indirect-drive inertial-confinement fusion. More efficient hohlraums and improved symmetry control have allowed for effective heating by alpha particles from fuel fusion reactions. This is significant for the progress of inertial-confinement fusion.

NATURE PHYSICS (2022)

Correction Multidisciplinary Sciences

Burning plasma achieved in inertial fusion (vol 601, pg 542, 2022)

A. B. Zylstra, O. A. Hurricane, D. A. Callahan, A. L. Kritcher, J. E. Ralph, H. F. Robey, J. S. Ross, C. V. Young, K. L. Baker, D. T. Casey, T. Doppner, L. Divol, M. Hohenberger, S. Le Pape, A. Pak, P. K. Patel, R. Tommasini, S. J. Ali, P. A. Amendt, L. J. Atherton, B. Bachmann, D. Bailey, L. R. Benedetti, L. Berzak Hopkins, R. Betti, S. D. Bhandarkar, J. Biener, R. M. Bionta, N. W. Birge, E. J. Bond, D. K. Bradley, T. Braun, T. M. Briggs, M. W. Bruhn, P. M. Celliers, B. Chang, T. Chapman, H. Chen, C. Choate, A. R. Christopherson, D. S. Clark, J. W. Crippen, E. L. Dewald, T. R. Dittrich, M. J. Edwards, W. A. Farmer, J. E. Field, D. Fittinghoff, J. Frenje, J. Gaffney, M. Gatu Johnson, S. H. Glenzer, G. P. Grim, S. Haan, K. D. Hahn, G. N. Hall, B. A. Hammel, J. Harte, E. Hartouni, J. E. Heebner, V. J. Hernandez, H. Herrmann, M. C. Herrmann, D. E. Hinkel, D. D. Ho, J. P. Holder, W. W. Hsing, H. Huang, K. D. Humbird, N. Izumi, L. C. Jarrott, J. Jeet, O. Jones, G. D. Kerbel, S. M. Kerr, S. F. Khan, J. Kilkenny, Y. Kim, H. Geppert Kleinrath, V. Geppert Kleinrath, C. Kong, J. M. Koning, J. J. Kroll, M. K. G. Kruse, B. Kustowski, O. L. Landen, S. Langer, D. Larson, N. C. Lemos, J. D. Lindl, T. Ma, M. J. MacDonald, B. J. MacGowan, A. J. Mackinnon, S. A. MacLaren, A. G. MacPhee, M. M. Marinak, D. A. Mariscal, E. V. Marley, L. Masse, K. Meaney, N. B. Meezan, P. A. Michel, M. Millot, J. L. Milovich, J. D. Moody, A. S. Moore, J. W. Morton, T. Murphy, K. Newman, J. -m. g. Di Nicola, A. Nikroo, R. Nora, M. V. Patel, L. J. Pelz, J. L. Peterson, Y. Ping, B. B. Pollock, M. Ratledge, N. G. Rice, H. Rinderknecht, M. Rosen, M. S. Rubery, J. D. Salmonson, J. Sater, S. Schiaffino, D. J. Schlossberg, M. B. Schneider, C. R. Schroeder, H. A. Scott, S. M. Sepke, K. Sequoia, M. W. Sherlock, S. Shin, V. A. Smalyuk, B. K. Spears, P. T. Springer, M. Stadermann, S. Stoupin, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, E. R. Tubman, C. Trosseille, P. L. Volegov, C. R. Weber, K. Widmann, C. Wild, C. H. Wilde, B. M. Van Wonterghem, D. T. Woods, B. N. Woodworth, M. Yamaguchi, S. T. Yang, G. B. Zimmerman

NATURE (2022)

Article Physics, Fluids & Plasmas

First graded metal pushered single shell capsule implosions on the National Ignition Facility

E. L. Dewald, S. A. MacLaren, D. A. Martinez, J. E. Pino, R. E. Tipton, D. D-M Ho, C. V. Young, C. Horwood, S. F. Khan, E. P. Hartouni, M. S. Rubery, M. Millot, A. R. Vazsonyi, S. Vonhof, G. Mellos, S. Johnson, V. A. Smalyuk, F. Graziani, E. R. Monzon, H. W. Xu, H. Huang, J. Bae, C. W. Kong, N. Rice, Y. M. Wang, P. Volegov, M. S. Freeman, C. Wilde

Summary: Graded metal pushered single shell (PSS) capsules are a promising option for achieving high fusion yields, and initial experiments have shown that the implementation of the design features has resulted in stable implosions with performance in agreement with predictions.

PHYSICS OF PLASMAS (2022)

Article Physics, Fluids & Plasmas

Neutron backscatter edges as a diagnostic of burn propagation

A. J. Crilly, B. D. Appelbe, O. M. Mannion, C. J. Forrest, J. P. Knauer, D. J. Schlossberg, E. P. Hartouni, A. S. Moore, J. P. Chittenden

Summary: High gain in hotspot-ignition inertial confinement fusion relies on effective burn propagation from the central hotspot to the surrounding cold dense fuel. The analysis of neutron backscatter edges proves to be a sensitive diagnostic method for evaluating the hydrodynamic conditions of the dense fuel, and synthetic neutron spectra from radiation-hydrodynamics simulations are used to assess this analysis.

PHYSICS OF PLASMAS (2022)

Article Physics, Fluids & Plasmas

Constraints on ion velocity distributions from fusion product spectroscopy

A. J. Crilly, B. D. Appelbe, O. M. Mannion, W. Taitano, E. P. Hartouni, A. S. Moore, M. Gatu-Johnson, J. P. Chittenden

Summary: Recent inertial confinement fusion experiments have revealed primary fusion spectral moments that cannot be explained by a Maxwellian velocity distribution. This suggests the need for an ion kinetic description of reacting ions. In this study, we propose a theoretical classification of non-Maxwellian ion velocity distributions using spectral moments, providing a detailed analysis from the microscopic to macroscopic level.

NUCLEAR FUSION (2022)

Article Physics, Fluids & Plasmas

Compensating cylindrical Hohlraum mode 4 asymmetry via capsule thickness tailoring and effects on implosions

E. L. Dewald, D. S. Clark, D. T. Casey, S. F. Khan, D. Mariscal, P. Di Nicola, B. J. MacGowan, E. P. Hartouni, M. S. Rubery, C. Choate, A. Nikroo, V. A. Smalyuk, O. L. Landen, M. Ratledge, P. Fitzsimmons, M. Farrell, M. Mauldin, N. Rice

Summary: Previous simulations suggested that adjusting the ablator thickness of the capsule could reduce asymmetries in the fuel and potentially increase nuclear yield. Experimental results showed that this method can indeed control the asymmetry and reduce it, but the expected improvement in nuclear yield was not observed, likely due to implosion instabilities and manufacturing deviations.

PHYSICS OF PLASMAS (2022)

Article Physics, Multidisciplinary

Evidence for suprathermal ion distribution in burning plasmas

E. P. Hartouni, A. S. Moore, A. J. Crilly, B. D. Appelbe, P. A. Amendt, K. L. Baker, D. T. Casey, D. S. Clark, T. Doppner, M. J. Eckart, J. E. Field, M. Gatu-Johnson, G. P. Grim, R. Hatarik, J. Jeet, S. M. Kerr, J. Kilkenny, A. L. Kritcher, K. D. Meaney, J. L. Milovich, D. H. Munro, R. C. Nora, A. E. Pak, J. E. Ralph, H. F. Robey, J. S. Ross, D. J. Schlossberg, S. M. Sepke, B. K. Spears, C. Young, A. B. Zylstra

Summary: Inertial confinement fusion experiments at the National Ignition Facility aim to achieve sustained thermonuclear burn for energy generation. This study investigates the departure from hydrodynamic behavior when fusion reactions become the primary source of plasma heating. The relationship between ion temperature and mean ion kinetic energy is analyzed using neutron spectrum moments.

NATURE PHYSICS (2023)

Article Physics, Fluids & Plasmas

Development of a bright MeV photon source with compound parabolic concentrator targets on the National Ignition Facility Advanced Radiographic Capability (NIF-ARC) laser

S. M. Kerr, D. Rusby, G. J. Williams, K. Meaney, D. J. Schlossberg, A. Aghedo, D. Alessi, J. Ayers, S. Azhar, M. B. Aufderheide, M. W. Bowers, J. D. Bude, H. Chen, G. Cochran, J. Crane, J. M. Di Nicola, D. N. Fittinghoff, P. Fitzsimmons, H. Geppert-Kleinrath, B. Golick, G. P. Grim, A. Haid, M. Hamamoto, R. Heredia, M. Hermann, S. Herriot, M. P. Hill, W. Hoke, D. Kalantar, A. Kemp, Y. Kim, K. LaFortune, N. Lemos, A. Link, R. Lowe-Webb, A. MacPhee, M. Manuel, D. Martinez, M. Mauldin, S. Patankar, L. Pelz, M. A. Prantil, M. Quinn, C. W. Siders, S. Vonhof, P. Wegner, S. Wilks, W. Williams, K. Youngblood, A. J. Mackinnon

Summary: Compound parabolic concentrators (CPCs) are used in the National Ignition Facility Advanced Radiographic Capability (NIF-ARC) laser to enhance electron acceleration and high energy photon production. CPC targets show significant improvement in mean electron energy (>2x) and photon brightness (>10x) compared to flat targets. Photon spectra are characterized for E-photon = 0.5 - 30 MeV using multiple diagnostic techniques, and beam width and pointing variations are provided. Efficient production of MeV photons with doses exceeding 10 rad in air at 1 m for E-photon > 0.5 MeV is observed with CPCs at I-laser asymptotic to 2 x 10^(18) W/cm(2). Promising results are achieved for the development of bright MeV x-ray and particle sources on Petawatt class laser systems. Published under an exclusive license by AIP Publishing.

PHYSICS OF PLASMAS (2023)

Article Instruments & Instrumentation

Constraining time-dependent ion temperature measurements in inertial confinement fusion (ICF) implosions with an intermediate distance neutron time-of-flight (nToF) detector

A. S. Moore, D. J. Schlossberg, M. J. Eckart, E. P. Hartouni, T. J. Hilsabeck, J. S. Jeet, S. M. Kerr, R. C. Nora, J. Kilkenny

Summary: This paper presents a concept of using neutron time-of-flight (nToF) at intermediate distances to constrain the measurement of the time-dependence of ion temperature in inertial confinement fusion. Through simulated nToF signals and analysis, the requirements for a future detector are determined.

REVIEW OF SCIENTIFIC INSTRUMENTS (2022)

Article Instruments & Instrumentation

Construction and study of instrument response functions for analysis of the National Ignition Facility (NIF) neutron time-of-flight detectors

S. Kerr, M. J. Eckart, K. Hahn, E. P. Hartouni, J. Jeet, O. L. Landen, A. S. Moore, D. J. Schlossberg

Summary: This study reports on the construction and validation of nToF IRFs at the NIF, with the aim to improve measurement accuracy and eliminate the need for fixed DSR baseline offsets. The IRF is divided into two parts, a core measured experimentally and a tail calibrated using data from indirect drive exploding pusher shots. A systematic parameter study found that variations in the tail components of the IRF have an impact on DSR, which agrees with non-zero DSR estimates.

REVIEW OF SCIENTIFIC INSTRUMENTS (2022)

Article Instruments & Instrumentation

Design of a multi-detector, single line-of-sight, time-of-flight system to measure time-resolved neutron energy spectra

D. J. Schlossberg, A. S. Moore, J. S. Kallman, M. Lowry, M. J. Eckart, E. P. Hartouni, T. J. Hilsabeck, S. M. Kerr, J. D. Kilkenny

Summary: A new method is proposed in this paper to measure time-resolved neutron energy spectra in inertial confinement fusion (ICF) plasmas. By utilizing general tomographic reconstruction techniques and Monte Carlo algorithm, the time-evolving neutron energy spectra can be reconstructed. The reconstructed spectra of the main energy peak are in good agreement with synthetic spectra, but there is more error in reconstructing the downscattered spectra.

REVIEW OF SCIENTIFIC INSTRUMENTS (2022)

Review Instruments & Instrumentation

Neutron time of flight (nToF) detectors for inertial fusion experiments

A. S. Moore, D. J. Schlossberg, B. D. Appelbe, G. A. Chandler, A. J. Crilly, M. J. Eckart, C. J. Forrest, V. Y. Glebov, G. P. Grim, E. P. Hartouni, R. Hatarik, S. M. Kerr, J. Kilkenny, J. P. Knauer

Summary: Neutrons generated in Inertial Confinement Fusion (ICF) experiments provide valuable information about the plasma conditions. The neutron time-of-flight (nToF) technique is utilized to measure the neutron energy spectrum due to the short emission time in ICF experiments. By placing detectors several meters away from the source, the neutron energy spectrum can be measured with high precision. We review the current state of nToF detectors at ICF facilities in the United States, including the measured physics, deployed detector technologies, and analysis techniques used.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

暂无数据