4.8 Article

Burning plasma achieved in inertial fusion

期刊

NATURE
卷 601, 期 7894, 页码 542-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41586-021-04281-w

关键词

-

资金

  1. US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
  2. agency of the US government

向作者/读者索取更多资源

A burning-plasma state has been achieved in the laboratory using a laser facility to generate X-rays and compress and heat a fuel-containing capsule. Experiments show fusion self-heating exceeding the mechanical work input, and a subset of experiments appear to have crossed the static self-heating boundary, providing an opportunity to study α-particle-dominated plasmas and burning-plasma physics.
Obtaining a burning plasma is a critical step towards self-sustaining fusion energy(1). A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn, enabling high energy gain. After decades of fusion research, here we achieve a burning-plasma state in the laboratory. These experiments were conducted at the US National Ignition Facility, a laser facility delivering up to 1.9 megajoules of energy in pulses with peak powers up to 500 terawatts. We use the lasers to generate X-rays in a radiation cavity to indirectly drive a fuel-containing capsule via the X-ray ablation pressure, which results in the implosion process compressing and heating the fuel via mechanical work. The burning-plasma state was created using a strategy to increase the spatial scale of the capsule(2,3) through two different implosion concepts(4-7). These experiments show fusion self-heating in excess of the mechanical work injected into the implosions, satisfying several burning-plasma metrics(3,8). Additionally, we describe a subset of experiments that appear to have crossed the static self-heating boundary, where fusion heating surpasses the energy losses from radiation and conduction. These results provide an opportunity to study a-particle-dominated plasmas and burning-plasma physics in the laboratory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Physics, Fluids & Plasmas

Development of a bright MeV photon source with compound parabolic concentrator targets on the National Ignition Facility Advanced Radiographic Capability (NIF-ARC) laser

S. M. Kerr, D. Rusby, G. J. Williams, K. Meaney, D. J. Schlossberg, A. Aghedo, D. Alessi, J. Ayers, S. Azhar, M. B. Aufderheide, M. W. Bowers, J. D. Bude, H. Chen, G. Cochran, J. Crane, J. M. Di Nicola, D. N. Fittinghoff, P. Fitzsimmons, H. Geppert-Kleinrath, B. Golick, G. P. Grim, A. Haid, M. Hamamoto, R. Heredia, M. Hermann, S. Herriot, M. P. Hill, W. Hoke, D. Kalantar, A. Kemp, Y. Kim, K. LaFortune, N. Lemos, A. Link, R. Lowe-Webb, A. MacPhee, M. Manuel, D. Martinez, M. Mauldin, S. Patankar, L. Pelz, M. A. Prantil, M. Quinn, C. W. Siders, S. Vonhof, P. Wegner, S. Wilks, W. Williams, K. Youngblood, A. J. Mackinnon

Summary: Compound parabolic concentrators (CPCs) are used in the National Ignition Facility Advanced Radiographic Capability (NIF-ARC) laser to enhance electron acceleration and high energy photon production. CPC targets show significant improvement in mean electron energy (>2x) and photon brightness (>10x) compared to flat targets. Photon spectra are characterized for E-photon = 0.5 - 30 MeV using multiple diagnostic techniques, and beam width and pointing variations are provided. Efficient production of MeV photons with doses exceeding 10 rad in air at 1 m for E-photon > 0.5 MeV is observed with CPCs at I-laser asymptotic to 2 x 10^(18) W/cm(2). Promising results are achieved for the development of bright MeV x-ray and particle sources on Petawatt class laser systems. Published under an exclusive license by AIP Publishing.

PHYSICS OF PLASMAS (2023)

Article Physics, Fluids & Plasmas

Impact of hohlraum cooling on ignition metrics for inertial fusion implosions

John D. D. Lindl, Steven W. W. Haan, Otto L. L. Landen

Summary: This study extends the evaluation of ignition metrics to consider the effect of hohlraum cooling before peak implosion velocity in radiation-driven implosions. Firstly, the authors present an extension of the results for key hot spot stagnation quantities from a previous study, showing that modified analytic expressions match the experimental results for implosions with and without hohlraum cooling. Secondly, the authors compare the radiation hydrodynamics simulations with an analytic piston model to investigate the sensitivity of hohlraum cooling time and shell radius at peak velocity. Thirdly, they provide a set of ignition metrics that are applicable to a wide range of capsule designs with or without hohlraum cooling before peak implosion velocity.

PHYSICS OF PLASMAS (2023)

Article Instruments & Instrumentation

Developing a platform for Fresnel diffractive radiography with 1 μm spatial resolution at the National Ignition Facility

M. O. Schoelmerich, T. Doppner, C. H. Allen, L. Divol, M. Oliver, D. Haden, M. Biener, J. Crippen, J. Delora-Ellefson, B. Ferguson, D. O. Gericke, A. Goldman, A. Haid, C. Heinbockel, D. Kalantar, Z. Karmiol, G. Kemp, J. Kroll, O. L. Landen, N. Masters, Y. Ping, C. Spindloe, W. Theobald, T. G. White

Summary: A designed x-ray Fresnel diffractive radiography platform is used to measure micron-scale changes in density gradients across materials at the National Ignition Facility. This platform uses 4.75 keV Ti K-shell x-ray emission to heat a plastic cylinder with liquid D-2, allowing for precise tracking of density gradient changes. By using Cu He-alpha x rays and a narrow slit aperture, significant diffraction features are observed, enhancing the sensitivity to density scale length changes at the material interface.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Article Physics, Multidisciplinary

Towards the first plasma-electron screening experiment

Daniel T. Casey, Chris R. Weber, Alex B. Zylstra, Charlie J. Cerjan, Ed Hartouni, Matthias Hohenberger, Laurent Divol, David S. Dearborn, Neel Kabadi, Brandon Lahmann, Maria Gatu Johnson, Johan A. Frenje

Summary: The enhancement of fusion reaction rates by electron screening is an important plasma-nuclear effect but has not been experimentally observed. Experiments using inertial confinement fusion (ICF) implosions may provide an opportunity to observe this effect. The experiments at the National Ignition Facility (NIF) have reached the relevant physical regime, but the expected impacts of plasma screening on nuclear reaction rates are currently too small and need to be increased. This work lays the foundation for future efforts to develop a platform capable of observing plasma electron screening.

FRONTIERS IN PHYSICS (2023)

Article Physics, Fluids & Plasmas

Reaching a burning plasma and ignition using smaller capsules/Hohlraums, higher radiation temperatures, and thicker ablator/ice on the national ignition facility

K. L. Baker, C. A. Thomas, O. L. Landen, S. Haan, J. D. Lindl, D. T. Casey, C. Young, R. Nora, O. A. Hurricane, D. A. Callahan, O. Jones, L. Berzak Hopkins, S. Khan, B. K. Spears, S. Le Pape, N. B. Meezan, D. D. Ho, T. Doppner, D. Hinkel, E. L. Dewald, R. Tommasini, M. Hohenberger, C. Weber, D. Clark, D. T. Woods, J. L. Milovich, D. Strozzi, A. Kritcher, H. F. Robey, J. S. Ross, V. A. Smalyuk, P. A. Amendt, B. Bachmann, L. R. Benedetti, R. Bionta, P. M. Celliers, D. Fittinghoff, C. Goyon, R. Hatarik, N. Izumi, M. Gatu Johnson, G. Kyrala, T. Ma, K. Meaney, M. Millot, S. R. Nagel, P. K. Patel, D. Turnbull, P. L. Volegov, C. Yeamans, C. Wilde

Summary: In indirect-drive implosions, increasing laser peak power and radiation drive temperature can improve the core hot spot energy, pressure, and neutron yield. This improvement has been quantified and explained by simple analytic scalings validated by 1D simulations. Extrapolating from existing data, it is possible to achieve a yield of 2-3x10^17 (0.5-0.7 MJ) using only 1.8 MJ of laser energy in a low gas-fill 5.4 mm diameter Hohlraum at the 500 TW National Ignition Facility peak power limit.

PHYSICS OF PLASMAS (2023)

Article Physics, Fluids & Plasmas

Gamma-ray imaging of inertial confinement fusion implosions reveals remaining ablator carbon distribution

V. Geppert-Kleinrath, N. Hoffman, N. Birge, A. DeYoung, D. Fittinghoff, M. Freeman, H. Geppert-Kleinrath, Y. Kim, K. Meaney, G. Morgan, M. Rubery, L. Tafoya, C. Wilde, P. Volegov

Summary: The joint LANL/LLNL nuclear imaging team has successfully obtained gamma-ray images of inertial confinement fusion implosions at the National Ignition Facility. These images provide crucial and difficult-to-acquire information about the confined fuel and ablator assembly. Gamma imaging reveals both direct emission of gamma radiation from DT fusion reactions and gamma rays produced when DT fusion neutrons scatter on carbon nuclei in the remaining ablator.

PHYSICS OF PLASMAS (2023)

Review Instruments & Instrumentation

X-ray imaging methods for high-energy density physics applications

B. Kozioziemski, B. Bachmann, A. Do, R. Tommasini

Summary: Large scale high-energy density science facilities are growing in scale and complexity, with improved driver capabilities pushing the boundaries of temperature, pressure, and densities. X-ray imaging, particularly absorption imaging, has been improved over the last few decades, enabling pico-second imaging with few micron resolutions.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Article Instruments & Instrumentation

Determining spectral response of the National Ignition Facility particle time of flight diagnostic to x rays

B. Reichelt, N. Kabadi, J. Pearcy, M. Gatu Johnson, S. Dannhoff, B. Lahmann, J. Frenje, C. K. Li, G. Sutcliffe, J. Kunimune, R. Petrasso, H. Sio, A. Moore, E. Mariscal, E. Hartouni

Summary: This paper develops a process to determine the x-ray sensitivity of PTOF detectors and relates it to the intrinsic properties of the detector. It is demonstrated that the diamond sample has significant non-homogeneity and the charge collection can be described by a linear model ax + b, where a = 0.63 +/- 0.16 V-1 mm(-1) and b = 0.00 +/- 0.04 V-1. The electron to hole mobility ratio is confirmed to be 1.5 +/- 1.0 and the effective bandgap is 1.8 eV, leading to an increased sensitivity.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Review Instruments & Instrumentation

Charged particle diagnostics for inertial confinement fusion and high-energy-density physics experiments

M. Gatu Johnson

Summary: MeV-range ions generated in ICF and high-energy-density physics experiments carry important information, such as fusion reaction yield, implosion areal density, electron temperature, and electric and magnetic fields. This paper reviews the principles of obtaining this information from data and describes the charged particle diagnostic suite available at major US ICF facilities. It discusses time-integrating instruments, time-resolving detectors, and charged-particle radiography setups for measuring ion emission and probing plasma experiments.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Article Physics, Multidisciplinary

Thermal transport in warm dense matter revealed by refraction-enhanced x-ray radiography with a deep-neural-network analysis

S. Jiang, O. L. Landen, H. D. Whitley, S. Hamel, R. London, D. S. Clark, P. Sterne, S. B. Hansen, S. X. Hu, G. W. Collins, Y. Ping

Summary: Transport properties of high energy density matter play a crucial role in the evolution of various systems. In this study, we propose an experimental platform utilizing x-ray differential heating and time-resolved refraction-enhanced radiography coupled with a deep neural network to overcome the uncertainties in the warm dense matter regime. We successfully measure the thermal conductivity of CH and Be in this regime and find discrepancies with existing models, suggesting the need for improvement in transport models to enhance the understanding of inertial confinement fusion.

COMMUNICATIONS PHYSICS (2023)

Article Physics, Fluids & Plasmas

First large capsule implosions in a frustum-shaped hohlraum

K. L. Baker, P. A. Amendt, J. S. Ross, V. A. Smalyuk, O. L. Landen, D. D. Ho, S. Khan, S. W. Haan, J. D. Lindl, D. Mariscal, J. L. Milovich, S. Maclaren, Y. Ping, D. J. Strozzi, R. M. Bionta, D. T. Casey, P. M. Celliers, D. N. Fittinghoff, H. Geppert-Kleinrath, V. Geppert-Kleinrath, K. D. Hahn, M. Gatu Johnson, Y. Kim, K. Meaney, M. Millot, R. Nora, P. L. Volegov, C. H. Wilde

Summary: This study reports on indirect-drive implosions driven by a dual conical frustum-shaped hohlraum called frustraum and the tuning campaigns leading up to two layered implosions. The results suggest that increasing the energy absorbed by the capsule at the expense of long coast times makes it more challenging to achieve ignition, and that further reducing coast time is warranted to improve the areal density and make ignition easier to achieve.

PHYSICS OF PLASMAS (2023)

Article Physics, Fluids & Plasmas

Measuring stopping power in warm dense matter plasmas at OMEGA

B. Lahmann, A. M. Saunders, T. Doppner, J. A. Frenje, S. H. Glenzer, M. Gatu-Johnson, G. Sutcliffe, A. B. Zylstra, R. D. Petrasso

Summary: A platform has been developed to measure accurately the stopping power of high-energy protons in warm dense matter (WDM) plasmas using x-ray Thomson scattering. In this study, stopping power measurements were successfully conducted in both WDM beryllium and boron plasmas. An increase in stopping power was observed in the boron experiments compared to their cold target counterparts, which agreed well with models accounting for the partial ionization of the plasma.

PLASMA PHYSICS AND CONTROLLED FUSION (2023)

暂无数据