4.8 Article

Platelet lysate-based pro-angiogenic nanocoatings

期刊

ACTA BIOMATERIALIA
卷 32, 期 -, 页码 129-137

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2015.12.028

关键词

Layer-by-layer assembling; Instructive surfaces; Platelet lysate; Growth factors; Angiogenesis; Endothelial cells

资金

  1. European Union [REGPOT-CT2012-316331 - POLARIS, FP7-KBBE-2010-4-266033 - SPECIAL]
  2. European Research Council [ERC-2012-ADG-20120216-321266]
  3. Portuguese Foundation for Science and Technology [SFRH/BD/70107/2010]
  4. North Portugal Regional Operational Program (ON.2-O Novo Norte), under the National Strategic Reference Framework, through the European Regional Development Fund [RL3-TECT-NORTE-01-0124-FEDER-000020]
  5. Fundação para a Ciência e a Tecnologia [SFRH/BD/70107/2010] Funding Source: FCT

向作者/读者索取更多资源

Human platelet lysate (PL) is a cost-effective and human source of autologous multiple and potent pro-angiogenic factors, such as vascular endothelial growth factor A (VEGF A), fibroblast growth factor b (FGF b) and angiopoietin-1. Nanocoatings previously characterized were prepared by layer-by-layer assembling incorporating PL with marine-origin polysaccharides and were shown to activate human umbilical vein endothelial cells (HUVECs). Within 20 h of incubation, the more sulfated coatings induced the HUVECS to the form tube-like structures accompanied by an increased expression of angiogenic-associated genes, such as angiopoietin-1 and VEGF A. This may be a cost-effective approach to modify 2D/3D constructs to instruct angiogenic cells towards the formation of neo-vascularization, driven by multiple and synergistic stimulations from the PL combined with sulfated polysaccharides. Statement of Significance The presence, or fast induction, of a stable and mature vasculature inside 3D constructs is crucial for new tissue formation and its viability. This has been one of the major tissue engineering challenges, limiting the dimensions of efficient tissue constructs. Many approaches based on cells, growth factors, 3D bioprinting and channel incorporation have been proposed. Herein, we explored a versatile technique, layer-by-layer assembling in combination with platelet lysate (PL), that is a cost-effective source of many potent pro-angiogenic proteins and growth factors. Results suggest that the combination of PL with sulfated polyelectrolytes might be used to introduce interfaces onto 2D/3D constructs with potential to induce the formation of cell-based tubular structures. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Review Food Science & Technology

Recent advances in nanomaterial-based optical biosensors for food safety applications: Ochratoxin-A detection, as case study

Diana I. Meira, Ana I. Barbosa, Joel Borges, Rui L. Reis, Vitor M. Correlo, Filipe Vaz

Summary: Global population growth has a significant impact on the global food industry, posing a threat to food safety and quality. Mycotoxins, particularly Ochratoxin-A (OTA), are produced by fungus that contaminates various food species and products. OTA not only endangers food production but also poses potential toxicological risks to humans, leading to carcinogenic and neurological diseases. Therefore, the development of a selective, sensitive, and reliable OTA biodetection approach is crucial for ensuring food safety.

CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION (2023)

Review Nanoscience & Nanotechnology

Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo- and radioresistances

Prithwish Kola, Prasanth Kumar Bhusetty Nagesh, Pritam Kumar Roy, K. Deepak, Rui Luis Reis, Subhas C. Kundu, Mahitosh Mandal

Summary: The increasing number of breast cancer cases globally and the rising death rate indicate the inadequacy of traditional and current treatments. Nanoparticle-based therapies such as photothermal therapy, photodynamic therapy, chemodynamic therapy, and sonodynamic therapy show promise in combating breast cancer through accurate drug delivery and elimination of cancer stem cells. These innovative therapies have fewer side effects compared to standard chemotherapy and address the stability issues associated with cancer immunotherapy. This review discusses various nanotheranostic systems and smart nanoparticles, their mechanisms of action, and their relevance in the current era.

WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY (2023)

Review Engineering, Biomedical

Hyaluronan Receptors as Mediators and Modulators of the Tumor Microenvironment

Ana M. Carvalho, Rui L. Reis, Iva Pashkuleva

Summary: The tumor microenvironment (TME) is a dynamic and complex environment shaped by heterogenous cancer and cancer-associated cells present at the tumor site. Hyaluronan (HA), a major component of TME, plays a role in promoting tumor growth and carcinogenesis. The interaction of different hyaladherins with HA triggers downstream signaling pathways, determining cell fate and contributing to TME progression towards a carcinogenic state.

ADVANCED HEALTHCARE MATERIALS (2023)

Article Chemistry, Multidisciplinary

Microfluidic Fabrication of Gadolinium-Doped Hydroxyapatite for Theragnostic Applications

Manuel Somoza, Ramon Rial, Zhen Liu, Iago F. Llovo, Rui L. Reis, Jesus Mosqueira, Juan M. Ruso

Summary: This study successfully created doped Hydroxyapatite nanoparticles with magnetic properties using microfluidics and Gadolinium as a contrast agent for medical applications. Computational Fluid Dynamics (CFD) was used to ensure the system worked in the laminar regime and nanoparticles diffused uniformly. The biomaterials were characterized using XRD, FE-SEM, EDX, confocal Raman microscopy, and FT-IR, confirming the successful incorporation of Gadolinium. Magnetic characterization confirmed the paramagnetic behavior of the nanoparticles, showing the potential for advanced nanomaterials in theragnostic applications.

NANOMATERIALS (2023)

Article Chemistry, Medicinal

Fucoidan from Fucus vesiculosus Inhibits Inflammatory Response, Both In Vitro and In Vivo

Lingzhi Wang, Catarina Oliveira, Qiu Li, Andreia S. Ferreira, Claudia Nunes, Manuel A. Coimbra, Rui L. Reis, Albino Martins, Chunming Wang, Tiago H. Silva, Yanxian Feng

Summary: This study characterized a pharmaceutical-grade fucoidan extracted from Fucus vesiculosus and investigated its anti-inflammatory potential. The extract contained mainly fucose, followed by uronic acids, galactose, and xylose, with a molecular weight of 70 kDa and a sulfate content of around 10%. In vitro and in vivo experiments demonstrated the ability of the fucoidan extract to modulate cytokine expression and reverse inflammation induced by lipopolysaccharide.

MARINE DRUGS (2023)

Article Biochemistry & Molecular Biology

Building Fucoidan/Agarose-Based Hydrogels as a Platform for the Development of Therapeutic Approaches against Diabetes

Lara L. Reys, Simone S. Silva, Diana Soares da Costa, Luisa C. Rodrigues, Rui L. Reis, Tiago H. Silva

Summary: The study aimed to create agarose/fucoidan hydrogels as a potential biomaterial for diabetes therapeutics. The hydrogels were produced by combining fucoidan and agarose, marine polysaccharides derived from seaweeds, and a thermal gelation process. Rheological tests showed a non-Newtonian and viscoelastic behavior, and the mechanical behavior indicated that increasing agarose concentrations resulted in hydrogels with higher Young's modulus. Encapsulating pancreatic cells in the hydrogels showed the ability to sustain cell viability and promote self-organization of pancreatic beta cells into pseudo-islets.

MOLECULES (2023)

Article Biochemistry & Molecular Biology

Potential of Atlantic Codfish (Gadus morhua) Skin Collagen for Skincare Biomaterials

Cristina V. Rodrigues, Rita O. Sousa, Ana C. Carvalho, Ana L. Alves, Catarina F. Marques, Mariana T. Cerqueira, Rui L. Reis, Tiago H. Silva

Summary: The potential of Atlantic codfish skin collagen for skincare was evaluated in this study. The extracted collagen showed similar characteristics to bovine skin collagen and was not cytotoxic to keratinocytes. Collagen membranes developed from the extract exhibited smooth surfaces, good water absorption capacity, and improved metabolic activity and proliferation of keratinocytes. Therefore, these membranes have potential applications in the biomedical and cosmeceutical fields.

MOLECULES (2023)

Article Polymer Science

Advanced Polymeric Membranes as Biomaterials Based on Marine Sources Envisaging the Regeneration of Human Tissues

Duarte Nuno Carvalho, Flavia C. M. Lobo, Luisa C. Rodrigues, Emanuel M. M. Fernandes, David S. S. Williams, Andrew Mearns-Spragg, Carmen G. G. Sotelo, Ricardo I. I. Perez-Martin, Rui L. L. Reis, Michael Gelinsky, Tiago H. H. Silva

Summary: The self-repair capacity of human tissue is limited, leading to the development of tissue engineering for tissue regeneration. This study proposes the development and characterization of innovative polymeric membranes formed by blending marine origin polymers as biomaterials for tissue regeneration. The polymeric membranes demonstrated promising chemical and physical properties, suitable for tissue engineering approaches, particularly for the regeneration of damaged articular cartilage.
Article Biotechnology & Applied Microbiology

Mn-Based Methacrylated Gellan Gum Hydrogels for MRI-Guided Cell Delivery and Imaging

Silvia Vieira, Paulina Strymecka, Luiza Stanaszek, Joana Silva-Correia, Katarzyna Drela, Michal Fiedorowicz, Izabela Malysz-Cymborska, Miroslaw Janowski, Rui Luis Reis, Barbara Lukomska, Piotr Walczak, Joaquim Miguel Oliveira

Summary: This study aims to develop a stable injectable Mn-based methacrylated gellan gum (Mn/GG-MA) hydrogel for real-time monitored cell delivery into the central nervous system. By supplementing GG-MA solutions with paramagnetic Mn2+ ions, the hydrogel can be visualized under Magnetic Resonance Imaging (MRI). Cell-laden hydrogels prepared using the Mn/GG-MA formulations remained viable after 7 days of culture. In vivo tests on immunocompromised mice showed that the injection of Mn/GG-MA solutions resulted in a continuous and traceable hydrogel visible on MRI scans. Overall, the developed formulations are suitable for non-invasive cell delivery techniques and image-guided neurointerventions.

BIOENGINEERING-BASEL (2023)

Article Chemistry, Medicinal

Chitosan/Virgin-Coconut-Oil-Based System Enriched with Cubosomes: A 3D Drug-Delivery Approach

Simone S. Silva, Luisa C. Rodrigues, Emanuel M. Fernandes, Diana Soares da Costa, Denise G. Villalva, Watson Loh, Rui L. Reis

Summary: This study reports on an emulsion system combining chitosan (CHT) and virgin coconut oil (VCO) to develop structures with potential for biomedical applications. The scaffolds produced through freezing and freeze-drying possessed a porous structure, high swelling ability, and suitable stiffness. Moreover, the sustained release of the encapsulated drug from the cubosomes into the CHT/VCO-based system was achieved. Overall, this approach provides a new avenue for designing porous biomaterials for drug delivery.

MARINE DRUGS (2023)

Review Biotechnology & Applied Microbiology

Spatial -omics technologies: the new enterprise in 3D breast cancer models

Lara Pierantoni, Rui L. Reis, Joana Silva-Correia, Joaquim M. Oliveira, Susan Heavey

Summary: The fields of tissue bioengineering, -omics, and spatial biology offer the opportunity for a paradigm shift in breast cancer research. However, collaboration between these fields has not reached its full potential. This review discusses the latest 3D breast cancer models, their biomaterials and technological platforms, as well as their biological evaluation, highlighting the potential for better microphysiological systems, improved drug development success rates, and personalized medicine approaches.

TRENDS IN BIOTECHNOLOGY (2023)

Article Materials Science, Multidisciplinary

Microfluidic-Assisted Interfacial Complexation of Extracellular Matrix Components to Mimic the Properties of Neural Tissues

Rui R. Costa, David Caballero, Diana Soares da Costa, Romen Rodriguez-Trujillo, Subhas C. Kundu, Rui L. Reis, Iva Pashkuleva

Summary: Anisotropy plays a crucial role in the organization and healing of neural tissues, and holds great potential for developing regeneration strategies. The study demonstrates the fabrication of microfibers from charged ECM components using interfacial polyelectrolyte complexation, which can mimic the mechanical properties of neural tissues. These fibers are biocompatible and promote the formation of neural processes, enabling the development of neural cells.

ADVANCED MATERIALS TECHNOLOGIES (2023)

Article Biology

Antioxidant and Anti-Inflammatory Activities of Stellera chamaejasme L. Roots and Aerial Parts Extracts

Temuulen Selenge, Sara F. Vieira, Odontuya Gendaram, Rui L. Reis, Soninkhishig Tsolmon, Enkhtuul Tsendeekhuu, Helena Ferreira, Nuno M. Neves

Summary: In this study, the ethanol and dichloromethane extracts of Stellera chamaejasme were evaluated for their antioxidant and anti-inflammatory activities. The ethanol extract of the aerial parts contained flavonoid compounds, while the root extracts and dichloromethane extract did not. The extracts exhibited strong antioxidant activity and efficiently inhibited the production of pro-inflammatory cytokines. Particularly, the dichloromethane extract of the root showed the strongest activity and contained fatty acids and triterpenoids.

LIFE-BASEL (2023)

Article Materials Science, Biomaterials

Efficacy of molecular and nano-therapies on brain tumor models in microfluidic devices

Ana M. Martins, Alexandra Brito, Maria Grazia Barbato, Alessia Felici, Rui L. Reis, Ricardo A. Pires, Iva Pashkuleva, Paolo Decuzzi

Summary: The 3D organization of cells plays a significant role in their behavior and response to treatment. In cancer research, spheroids, organoids, and microfluidic chips are used to mimic the complex microenvironment of tumors. This study utilized microfluidic devices to replicate the spatial organization of brain tumors and evaluate the efficacy of anti-cancer agents. The results showed that brain tumor cells were more sensitive to treatment in the microfluidic device compared to traditional cell cultures. The proposed microfluidic chips can effectively reproduce the 3D structure of tumors and assess the effectiveness of therapeutic compounds.

BIOMATERIALS ADVANCES (2023)

Article Green & Sustainable Science & Technology

Bond Behavior of Recycled Tire Steel-Fiber-Reinforced Concrete and Basalt-Fiber-Reinforced Polymer Rebar after Prolonged Seawater Exposure

Fatemeh Soltanzadeh, Ali Edalat-Behbahani, Kasra Hosseinmostofi, Ibrahim Fatih Cengiz, Joaquim Miguel Oliveira, Rui L. Reis

Summary: This study investigated the bond durability characteristics of basalt-fiber-reinforced polymer (BFRP) rebars in fiber-reinforced self-compacting concrete (FRSCC) structures. The influence of environmental conditions, reinforcement type, and loading type on the bond strength of the specimens was explored. The results were used to estimate the bond strength retention between BFRP and FRSCC after 50 years of exposure to seawater.

SUSTAINABILITY (2023)

暂无数据