4.6 Article

An entropy-based classification of breast cancerous genes using microarray data

期刊

NEURAL COMPUTING & APPLICATIONS
卷 32, 期 7, 页码 2397-2404

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00521-018-3864-8

关键词

Support vector machine; k-Nearest neighbor; Random forest; Naive Bayes; Classification; Machine learning algorithm

向作者/读者索取更多资源

Gene expression levels obtained from microarray data provide a promising technique for doing classification on cancerous data. Due to the high dimensionality of the microarray datasets, the redundant genes need to be removed and only significant genes are required for building the classifier. In this work, an entropy-based method was used based on supervised learning to differentiate between normal tissue and breast tumor based on their gene expression profiles. This work employs four widely used machine learning techniques for breast cancer prediction, namely support vector machine (SVM), random forest, k-nearest neighbor (KNN) and naive Bayes. The performance of these techniques was evaluated on four different classification performance measurements which result in getting more accuracy in case of SVM as compared to other machine learning algorithms. Classification accuracy of 91.5% was achieved by support vector machine with 0.833 F1 measures. Furthermore, these techniques were evaluated on the basis of performance by ROC curve and calibration graph.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据