4.6 Article

Application of transfer learning for cancer drug sensitivity prediction

期刊

BMC BIOINFORMATICS
卷 19, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12859-018-2465-y

关键词

Drug sensitivity prediction; Pharmacogenomic studies; CCLE; GDSC; Transfer learning; Nonlinear mapping; Latent variable; Cost optimization

资金

  1. NIH [R01GM122084]

向作者/读者索取更多资源

BackgroundIn precision medicine, scarcity of suitable biological data often hinders the design of an appropriate predictive model. In this regard, large scale pharmacogenomics studies, like CCLE and GDSC hold the promise to mitigate the issue. However, one cannot directly employ data from multiple sources together due to the existing distribution shift in data. One way to solve this problem is to utilize the transfer learning methodologies tailored to fit in this specific context.ResultsIn this paper, we present two novel approaches for incorporating information from a secondary database for improving the prediction in a target database. The first approach is based on latent variable cost optimization and the second approach considers polynomial mapping between the two databases. Utilizing CCLE and GDSC databases, we illustrate that the proposed approaches accomplish a better prediction of drug sensitivities for different scenarios as compared to the existing approaches.ConclusionWe have compared the performance of the proposed predictive models with database-specific individual models as well as existing transfer learning approaches. We note that our proposed approaches exhibit superior performance compared to the abovementioned alternative techniques for predicting sensitivity for different anti-cancer compounds, particularly the nonlinear mapping model shows the best overall performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据