4.7 Article

The Southern Ocean silicon trap: Data-constrained estimates of regenerated silicic acid, trapping efficiencies, and global transport paths

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
卷 119, 期 1, 页码 313-331

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2013JC009356

关键词

ocean silicon cycle; silicic acid; Southern Ocean; nutrient trapping; Green-function methods

资金

  1. ARC [DP120100674]
  2. NSF [ATM-0854711, OCE-1131768]
  3. Directorate For Geosciences [1131768] Funding Source: National Science Foundation

向作者/读者索取更多资源

We analyze an optimized model of the global silicon cycle embedded in a data-assimilated steady ocean circulation. Biological uptake is modeled by conditionally restoring silicic acid in the euphotic zone to observed concentrations where the modeled concentrations exceed the observational climatology. An equivalent linear model is formulated to which Green-function-based transport diagnostics are applied. We find that the models' opal export through 133 m depth is 16624 Tmol Si/yr, with the Southern Ocean (SO) providing approximate to 70% of this export, approximate to 50% of which dissolves above 2000 m depth. The global-scale gradients of the opal dissolution rate are primarily meridional, while the global-scale gradients of phosphate remineralization are primarily vertical. The mean depth of the temperature-dependent silicic-acid regeneration reaches 2300 m in the SO, compared to 600 m for phosphate remineralization. Silicic acid is stripped out of the euphotic zone far more efficiently than phosphate, with only (345)% of the global silicic-acid inventory being preformed, compared to (617)% for phosphate. Subantarctic and tropical waters contribute most of the ocean's regenerated silicic acid, while Antarctic waters provide most of the preformed silicic acid. About half of the global silicic-acid inventory is trapped in transport paths connecting successive SO utilizations, with silicic acid last utilized in the SO having only a (52)% chance of being next utilized outside the SO. This trapping depletes subantarctic mode waters of silicic acid relative to phosphate, which has a (44 +/- 2)% probability of escaping successive SO utilization. Key Points A data-constrained model quantifies opal export and silicic acid transport paths Preformed and regenerated components from key source regions are estimated Silicic acid undergoes 20$\pm$8 successive S.-Ocean utilization on average

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据