4.6 Article

Biobased Biodegradable Waterborne Hyperbranched Polyurethane as an Ecofriendly Sustainable Material

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 2, 期 12, 页码 2730-2738

出版社

AMER CHEMICAL SOC
DOI: 10.1021/sc5006022

关键词

Tannic acid; sustainable polymer; low VOC polyurethane; bacterial degradation; antioxidant

资金

  1. DBT, India [BT/235/NE/TBP/2011]
  2. SAP (UGC), India [F.3-30/2009 (SAP-II)]
  3. FIST program (DST), India [SR/FST/CSI-203/209/1]

向作者/读者索取更多资源

Research thrust to address the problems confronting the use of conventional polymers like high volatile organic compound (VOC) content still remains a challenge. In this context, the authors report the synthesis of a sustainable and biodegradable waterborne hyperbranched polyurethane (WHPU) using polyphenolic tannic add in lieu of vegetable oil as the biobased component. The chemical structure of WHPU was characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. An UV-visible peak at the wavelength of 282 nm confirmed the presence of catechol moiety in WHPU. WHPU exhibited pronounced thermostability and desirable performance (tensile strength, 6.87 MPa; elongation at break, 315%; scratch hardness, 5.5 kg for 15 wt % tannic add based WHPU). The radical scavenging and hemolytic assays of WHPU showed their potent antioxidant activity and cytocompatibility with the erythrocytes, respectively. Furthermore, WHPU exhibited bacterial degradation by Pseudomonas aeruginosa. Thus, the above results forward the synthesized WHPU as a potent ecoftiendly and sustainable polymeric material by a simple approach that possesses a higher degree of sustainability over a purely petrochemical route.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Polymer Science

Tannic acid based bio-based epoxy thermosets: Evaluation of thermal, mechanical, and biodegradable behaviors

Nobomi Borah, Niranjan Karak

Summary: This scientific paper discusses the synthesis of a bio-based tannic acid epoxy resin TAE100 with excellent mechanical properties and adhesive strength, showing potential applications in eco-coatings and adhesives. The thermosets are also biodegradable, as confirmed by microbial testing, making them suitable for environmentally friendly purposes.

JOURNAL OF APPLIED POLYMER SCIENCE (2022)

Article Engineering, Environmental

Polymeric photocatalytic membrane: An emerging solution for environmental remediation

Sukanya Kundu, Niranjan Karak

Summary: This article reviews the recent progress in the application of polymeric photocatalytic membranes (PPM) for environmental remediation. It focuses on the removal efficiency and mechanisms for degrading various pollutants, and highlights the challenges and performances of fabricating PPMs in the presence of sunlight.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Green & Sustainable Science & Technology

Starch based mechanically tough hydrogel for effective removal of toxic metal ions from wastewater

Dimpee Sarmah, Niranjan Karak

Summary: This study demonstrates a new synthetic strategy to improve the mechanical properties of starch grafted poly(acrylic acid) hydrogel by introducing a double cross-linked network. The cross-linked hydrogel exhibits excellent mechanical strength and notable adsorption capacity for heavy metal ions, making it promising for wastewater purification and reusability.

JOURNAL OF CLEANER PRODUCTION (2022)

Article Polymer Science

Starch and itaconic acid-based superabsorbent hydrogels for agricultural application

Ashok Bora, Niranjan Karak

Summary: This study synthesized a biobased superabsorbent with high water absorption capacity and fast water absorption rate using starch and itaconic acid, which shows great potential to be used as an environmentally friendly superabsorbent in agricultural applications.

EUROPEAN POLYMER JOURNAL (2022)

Article Polymer Science

Bio-based poly(ester amide): mechanical, thermal and biodegradable behaviors

Annesha Kar, Niranjan Karak

Summary: This article reports the synthesis of a bio-based water-soluble poly(ester amide) through a solvent-free environmentally friendly method, and its further modification using poly(vinyl alcohol). The prepared polymeric resin exhibited excellent mechanical properties, good thermal stability, transparency, and biodegradability, making it a potential environmentally friendly coating material.

JOURNAL OF POLYMER RESEARCH (2022)

Correction Chemistry, Multidisciplinary

Y Ultratough, Ductile, Castor Oil-Based, Hyperbranched, Polyurethane Nanocomposite Using Functionalized Reduced Graphene Oxide (vol 2, pg 1195, 2014)

Suman Thakur, Niranjan Karak

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2022)

Correction Chemistry, Multidisciplinary

Biobased Biodegradable Waterborne Hyperbranched Polyurethane as an Ecofriendly Sustainable Material (vol 2, pg 2730, 2014)

Satyabrat Gogoi, Niranjan Karak

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2022)

Review Chemistry, Multidisciplinary

Sustainable smart anti-corrosion coating materials derived from vegetable oil derivatives: a review

Poonam Singh, Anuj Rana, Niranjan Karak, Indresh Kumar, Sravendra Rana, Pankaj Kumar

Summary: Sustainable development is a critical concern in today's fast-paced technological world, and the use of renewable resources is essential in achieving sustainable development goals. Researchers have been focusing on the development of bio-based polymers derived from renewable resources like lignin, chitosan, vegetable oils, cellulose, etc. These polymers, particularly those derived from vegetable oils, offer unique properties that can be used to create value-added systems, such as coatings with improved protective properties against corrosion. This review explores the use of vegetable oil-based self-healing polymers in anti-corrosion coatings.

RSC ADVANCES (2023)

Article Materials Science, Composites

Sustainable green composite of yam and agricultural waste corn stalk fiber with good mechanical, thermal, optical, aging performance and excellent biodegradability

Raghav Poudel, Niranjan Karak

Summary: In this study, a green composite of yam and alkali-treated corn stalk fiber was prepared, which exhibited good mechanical and thermal properties and excellent biodegradability under normal environmental conditions. The potential applications of this composite material include packaging, biomedical, automobile, and construction sectors.

COMPOSITES SCIENCE AND TECHNOLOGY (2023)

Article Polymer Science

Bisphenol-A free bio-based gallic acid amide epoxy thermosets

Kalyan Dutta, Niranjan Karak

Summary: BPA-based epoxy thermoset has toxic effects on human health, so there is a need for environmentally friendly bio-based alternatives. In this study, a gallic acid amide was synthesized from renewable gallic acid and diethanol amine, and the epoxy resin was obtained through a condensation reaction. The synthesized epoxy thermosets showed excellent properties.

JOURNAL OF APPLIED POLYMER SCIENCE (2023)

Article Materials Science, Multidisciplinary

Robust Self-Healable and Three-Dimensional Printable Thermoplastic Elastomeric Waterborne Polyurethane for Artificial Muscle and Biomedical Scaffold Applications

Samiran Morang, Ashutosh Bandyopadhyay, Jay Hind Rajput, Biman B. Mandal, Atharva Poundarik, Niranjan Karak

Summary: Waterborne polyurethanes with smart attributes like self-healing, shape-memory, reprocessability, and excellent mechanical properties are achieved through the triple synergistic effect of dynamic hard domains, asymmetric IPDI-IPDA architecture, and shape memory effect. This strategy leads to the synthesis of robust self-healable WPUs with high healing efficiency, shape recovery, and outstanding mechanical strength. The SHWPU elastomer exhibits all characteristics of advanced materials with smart attributes and eco-friendly nature.

ACS APPLIED POLYMER MATERIALS (2023)

Article Nanoscience & Nanotechnology

Asymmetric Hard Domain-Induced Robust Resilient Biocompatible Self-Healable Waterborne Polyurethane for Biomedical Applications

Samiran Morang, Ashutosh Bandyopadhyay, Biman B. Mandal, Niranjan Karak

Summary: A transparent, self-healable, and highly tough waterborne polyurethane elastomer with amazing mechanical properties has been developed by molecular engineering. The elastomer shows excellent shape recovery, high fracture energy, and good hemocompatibility. Additionally, it retains its mechanical strength during melt re-processability and can be biodegraded with the help of microbes. This material holds great potential as a smart biomaterial and coating for biomedical devices.

ACS APPLIED BIO MATERIALS (2023)

Article Materials Science, Biomaterials

Swelling induced mechanically tough starch-agar based hydrogel as a control release drug vehicle for wound dressing applications

Dimpee Sarmah, Munmi Borah, Manabendra Mandal, Niranjan Karak

Summary: In recent years, polysaccharide-based hydrogels have gained attention due to their biodegradability, biocompatibility, and non-toxicity. This study presents a simple method for synthesizing a mechanically tough, biocompatible, and biodegradable hydrogel using polysaccharides like starch and agar. The hydrogel showed high mechanical strength and cell viability, and also exhibited good encapsulation efficiency for antibacterial drugs. The hydrogel with loaded drug demonstrated the potential to be used as a promising candidate in wound dressing applications.

JOURNAL OF MATERIALS CHEMISTRY B (2023)

Article Materials Science, Multidisciplinary

A dynamic hard domain-induced self-healable waterborne poly(urethane/acrylic) hybrid dispersion for 3D printable biomedical scaffolds

Samiran Morang, Jay Hind Rajput, Anwesha Mukherjee, Atharva Poundarik, Bodhisatwa Das, Niranjan Karak

Summary: This study introduces a new strategy to enhance the self-healing ability and mechanical properties of polyurethane (PU) films. By utilizing the triple synergistic effect of a dynamic hard domain, multiple hierarchical hydrogen bonding, and semi-interpenetrating network formation, a series of self-healable waterborne PU/polyacrylic films were prepared. These films exhibit excellent mechanical robustness and biodegradability. The study also demonstrates the potential of these films in biomedical applications.

MATERIALS ADVANCES (2023)

Article Chemistry, Multidisciplinary

A robust epoxy nanocomposite with iron oxide decorated cellulose nanofiber as a sustained drug delivery vehicle for antibacterial drugs

Nobomi Borah, Muzamil Ahmad Rather, Bibrita Bhar, Biman B. Mandal, Manabendra Mandal, Niranjan Karak

Summary: This study successfully synthesized a nanohybrid of cellulose nanofibers loaded with iron oxide nanoparticles, which showed improved thermomechanical performance and tunable applicability in a bio-based epoxy matrix. Additionally, the nanocomposite exhibited pH-responsive release behavior when used as a carrier platform for an antibacterial drug.

NEW JOURNAL OF CHEMISTRY (2023)

暂无数据