4.7 Article

VLSI Implementation of a Bio-Inspired Olfactory Spiking Neural Network

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNNLS.2012.2195329

关键词

Analog very-large-scale integration (VLSI); electronic nose; olfaction; spiking neural network; subthreshold oscillation

资金

  1. National Science Council (NSC) of Taiwan [NSC 100-2220-E-007-007]

向作者/读者索取更多资源

This paper presents a low-power, neuromorphic spiking neural network (SNN) chip that can be integrated in an electronic nose system to classify odor. The proposed SNN takes advantage of sub-threshold oscillation and onset-latency representation to reduce power consumption and chip area, providing a more distinct output for each odor input. The synaptic weights between the mitral and cortical cells are modified according to an spike-timing-dependent plasticity learning rule. During the experiment, the odor data are sampled by a commercial electronic nose (Cyranose 320) and are normalized before training and testing to ensure that the classification result is only caused by learning. Measurement results show that the circuit only consumed an average power of approximately 3.6 mu W with a 1-V power supply to discriminate odor data. The SNN has either a high or low output response for a given input odor, making it easy to determine whether the circuit has made the correct decision. The measurement result of the SNN chip and some well-known algorithms (support vector machine and the K-nearest neighbor program) is compared to demonstrate the classification performance of the proposed SNN chip. The mean testing accuracy is 87.59% for the data used in this paper.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据