4.6 Article

Formulation of robust organic-inorganic hybrid magnetic microcapsules through hard-template mediated method for efficient enzyme immobilization

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 3, 期 14, 页码 2883-2891

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4tb02102a

关键词

-

资金

  1. National Natural Science Foundation of China [21374045]
  2. scientific research ability training of under-graduate students majoring in chemistry by the two patters based on the tutorial system and top students [J1103307]
  3. Opening Foundation of State Key Laboratory of Applied Organic Chemistry [SKLAOC-2009-35]

向作者/读者索取更多资源

A mild and facile method for the construction of robust organic-inorganic hybrid magnetic microcapsules was developed by a hard-template mediated method combined with polydopamine (PDA) and Fe3O4 nanoparticles onto a CaCO3 microparticle template. More specifically, negatively charged Fe3O4 nanoparticles were adsorbed on the surface or into the lumen of porous CaCO3 microparticles through electrostatic interaction and physical absorption. Then, the magnetic sacrificial templates were coated with PDA through the self-polymerization of dopamine to obtain the magnetic PDA-CaCO3 microparticles, which was followed by template removal using EDTA to construct organic-inorganic hybrid magnetic microcapsules. Characterization confirmed that the microcapsules possess a robust hollow structure such that the enzyme inside exists in a free state. The Fe3O4 nanoparticles acted as critical factors in the microcapsules for both recyclable component and tough scaffolds to sustain the microcapsules away from collapsing and folding. Combing the merits of the organic layer and the inorganic component, the microcapsules were applied for the encapsulation of Candida Rugosa Lipase (CRL). The encapsulated CRL was demonstrated to have several advantages, including increased encapsulation efficiency, enzyme activity and long-term storage stability. Hopefully, the as-prepared microbioreactor may provide a facile and generic approach for other biochemical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Materials Science, Biomaterials

An artificial protein cage made from a 12-membered ring

Izabela Stupka, Artur P. Biela, Bernard Piette, Agnieszka Kowalczyk, Karolina Majsterkiewicz, Kinga Borzecka-Solarz, Antonina Naskalska, Jonathan G. Heddle

Summary: Artificial protein cages, such as TRAP-cages, have potential applications in vaccines and drug delivery. TRAP-cages have the ability to control the disassembly conditions by modifying the interface between their building blocks. By using TRAP rings with different numbers of monomers, it is possible to predict the formation of other cages.

JOURNAL OF MATERIALS CHEMISTRY B (2024)

Article Materials Science, Biomaterials

Facile one-pot synthesis of flower-like ellagic acid microparticles incorporating anti-microbial peptides for enhanced wound healing

Guo Zhang, Yu Wang, Hua Qiu, Lei Lu

Summary: This study presents a one-pot synthesis method for flower-like AMPs@EAMP particles by combining antimicrobial peptides with ellagic acid, offering enlarged surface area, excellent biocompatibility, and broad-spectrum antibacterial activity. In vivo studies indicate their potential for tissue repair and immune barrier reconstruction.

JOURNAL OF MATERIALS CHEMISTRY B (2024)

Article Materials Science, Biomaterials

Transparent silk fibroin film-facilitated infected-wound healing through antibacterial, improved fibroblast adhesion and immune modulation

Jiamei Zhang, Lingshuang Wang, Cheng Xu, Yingui Cao, Shengsheng Liu, Rui L. Reis, Subhas C. Kundu, Xiao Yang, Bo Xiao, Lian Duan

Summary: Pluronic F127 modified silk fibroin film with different types of antibacterial agents could accelerate wound recovery by promoting fibroblast adhesion, eradicating bacteria, and facilitating angiogenesis and re-epithelialization.

JOURNAL OF MATERIALS CHEMISTRY B (2024)

Article Materials Science, Biomaterials

Polyarylether-based COFs coordinated by Tb3+ for the fluorescent detection of anthrax-biomarker dipicolinic acid

Yinsheng Liu, Mingyue Wang, Yinfei Hui, Lei Sun, Yanrui Hao, Henlong Ren, Hao Guo, Wu Yang

Summary: In this study, a rare-earth hybrid luminescent material was developed for the detection of a biomarker for anthrax. The material showed excellent selectivity and high sensitivity, allowing for the determination of the biomarker in saliva and urine. Additionally, a convenient point-of-care testing method using fluorescent test paper and a smartphone was established for the initial diagnosis of anthrax.

JOURNAL OF MATERIALS CHEMISTRY B (2024)

Review Materials Science, Biomaterials

Recent advances in fabricating injectable hydrogels via tunable molecular interactions for bio-applications

Wenshuai Yang, Jingsi Chen, Ziqian Zhao, Meng Wu, Lu Gong, Yimei Sun, Charley Huang, Bin Yan, Hongbo Zeng

Summary: Injectable hydrogels with shear-thinning and/or in situ formation properties offer distinct advantages in bioengineering applications, as they can be directly delivered to target sites, possess self-healing abilities, and simplify the implantation process.

JOURNAL OF MATERIALS CHEMISTRY B (2024)